Prototype 1.5

The Complete API Reference

Sam Stephenson and the Prototype ‘Leam

Prototype 1.5: The Complete API Reference

Sam Stephenson and the Prototype Team

Published January 2007. 1st edition.
Copytight © 2006-2007 Sam Stephenson.
Prototypc1 is a JavaScript framework that aims to ease development of dynamic web applications. Prototype was created by Sam Stephenson who re-

leased the framework as an open-source project in February 2005. Other members of the core development team are: Thomas Fuchs, Justin Palmer,
Andrew Dupont, Dan Webb, Scott Raymond, Seth Dillingham, Mislav Marohni#, Christophe Porteneuve and Tobie Langel.

This PDF book version of the Prototype API reference was created by Josh Clarkz, but all content comes from the Prototype site and is the intellec-

tual property of Sam Stephenson and the Prototype core team.

. . . ~ . ~ . . . 3 . L
This PDF is distributed under the Creative Commons Attribution-ShareAlike 2.5". This means that you can copy, redistribute or create your own de-
rivative works from this PDF, provided that you do so with the same Creative Commons license and include the foregoing notice.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for dam-

ages resulting from the use of the information contained herein.

! http:/ /www.prototypejs.org/
http:/ /www.globalmoxie.com/
http://creativecommons.org/licenses/by-sa/2.5/

http://www.prototypejs.org/
http://www.globalmoxie.com/
http://creativecommons.org/licenses/by-sa/2.5/

Table of Contents

1. UHHEY METNOAS oeieiiiiiiii ettt ettt ettt e e ettt e et e e e e et eennnaaaanes 1
e 1
B 3
A 4
B e 5
H 5
R 6
B ettt 6
TETERESE it 7
document.getElementsByClassINameccccoiiiiii 8
20 AJAX o 9
AJAX OPLONS oovviiiiiiiiiiiiiiii 9
Ajax.PeriodicalUpdaterooooiiiiiiiiiiiiiiii 12
AJAXREQUEST oo 15
AjJax.Responders ... 19
AJAXUPAALEL «oeiiiiiiiiiiiiiiiiii 20
B ALY et e ettt e ettt e e e ettt a e e e e et e et e eeeeeeeen 23
Why you should stop using for...1in to iterate (or never take it Up)oooevvviiiiiiiiiiinnnnnnnn, 23
What is a developer to do? ... 24
CLEAT e 25
CLOTIE it e 25
COMMPACE ettt e e e e et et e e e e e e e e et e e e e e st e aba e e e e e e s e aaaaaaaaaes 25
CACKL - 26
IS e 26
FIALECIL L. e 26
O oottt 26
INAEXOF Lo 27
TEUSPIECE ittt e e e et e e e e e e 27
JASE oo 28
FEAUCE toiiiiiiiiiiiiii i 28
£ T 28
S1Z e aaaaes 29
EOALTAY .ottt ettt e e ettt e e ettt ettt e e e et e e e 29
UTLIQ +eee ettt ettt ettt e et e e ettt e e e et e e e e e e e e e e e e e e e 29
WILROUE Lo 30
A ClASS oo 31
CLEALE oiiuiniiiiii ettt ettt et et et e e e e 31
5 BIEMENT it 33
AAACIASSINANIE ... 34
AAAMELOAS .iiiiiiiiie e 34

Py e Telor] o Y ST 37

CLASSINAINIES .uiniii ittt 38

cleanWhitespaceooooiiiiiiiiiiii 38
deSCENAANTOL .ou.iiiiii e e e e e et e e e e e aaas 39
QoY ol=t 8T P20 a PPN 40
14 (o)7 « AU TP 40
CITIPEY ettt e e e e e et e e s e e s 42
1o 78T PPN 42
GEtDIMENSIONS .oviiiiiiiiiiiiiiiiiiiiiiiii i 43
getBlementsByClassName ..o 43
getElementsBySElectOroiiiiiiiiiiiiiiiiiiiiiii s 44
GEtHEIGNE ..o 45
GOESLYIC it e 45
GEEWAALNL Looiiiiiiiiiiiii e 46
RASCIASSINAMIE ittt ittt ettt e ettt s e e et e et e e e eeeean 47
I et 47
IMMediate]DESCENAANTS ..ivvveiiitiiii i e e e e e e e e e e e e e a e e b e e et e aaes 48
8 0o 48
MAKECHPPING « .ttt 49
MAKEPOSIHONEA .1uuiiiitiiiie e e e e e e et e et e e e et eeabt e er e e ai e e e aaaas 49
IMALCR Lo ettt e et e e et e eee 51
81 SRRt 51
NEXESIDIINES e 53
o) ST PRSP 53
PLEVIOUS .ottt 54
PLeVIOUSSIDINGS «oeeiiiiiiiiiiiiiiiiiii 55
LEAAATIITDULE ©vueeiiit ettt ettt e ettt e ettt e e e ettt s e et et e e e eeabn e e eanbaaeees 56
£ECULSIVELYCOIECE .. 56
e 0010) /<R 57
£EMOVECIASSINAITNIE 1vvuiiiieiie e it et e et e et e et e et e e et e e et e e ete e esenaeseneestnaeeseeaseneesenassenaesnes 57
FEPLACE L.oviiiiiiiiiiiiiiiiii 58
Yo o)1 1 Ko TP 59
SEESEYIE Lovviiiiiii i 59
SO e ettt et e et 60
SIDIIILES -ttt 62
SEOPODSEIVIIIE «oeeiiiiiiiiiiiiii i 62
EOZELE ittt 63
tOg@leClasSINAINEiiiiiiiiiiiiiiiiiiiiiiii i 64
UNAOCHPPING e 64
UNAOPOSIHONEA +..iiiiiiiietiii et ettt e et e e e e e e eeaaa s 65
UD oottt 66
UPAALE teeiiiiiiiiiiiii i 67
72 153 101N 69
6. ENUMIEIADIE o.oiiniiiiii e 71
Aliases: it’s all about having it FOUL WAYuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e 71
Using it effICIENLLY ..oooeeiiiiiiiiiiie e, 71

vi | Prototype 1.5

collect, invoke, pluck and each: thinking about the use casecccccvuvemiiiiiieiiinnnnnnns 72

reject and FindALL vs. PArtition .o 72
Mixing Enumerable ifl yOUr OWI ODJECESuuuuiuiumiiiiiiiiiiiiiiiiiiiiiiiiiieiiii e 72
1| 73
ALY ettt et et e e e et e et e et e e e e e s e 74
oo 115 P 75
& 1111 APPSR 75
AT it 75
o0 (o TP 77
50 e PP UUPPRR 77
5V ae 12 V1 PP 78
LCD ettt e et e e et e e e e st e e e e s e e aa e 78
ol LD a [T URPRPRRRN 79
0ot 79
s N0 (TP 80
15 1 T PO PPPPPPRO P 81
15075 QPSPPSR PPPTO PPN 81
1501001 o1 ST PUPTPPUPRPN 82
11018 NP PPURPRURN 82
b Lo o PP 82
PIUCK oo 83
<o P PP PPPPPOR P 83
<) T P 84
7P 84
SOTEBY oo 85
EOALTAY 1eeeeiiiiiiiiie e e ettt oottt e oo ettt ettt e e e e e et e ettt e e e ettt ettt e e et et e e e 85
ZIP coiiiii 86
R S o L PP 87
What a wonderful mess (it would Be) H ..ooovvriiiiiiiiiiiiiiii e 87
Prototype to the rescuel ... 87
1S 50113 o1 ST 88
e bale I B (7001 o | PR 88
FT) 1SS S O ol PRSP 89
OIS EIVE ettt ettt et e a e e 90
POINLEIX ittt e 92
POINEELY ittt e 92
SEOP + ettt ettt e e et e e e et e et e e e e e e e 93
SEOPODSEIVINIZ «eeiiiiiiiiiiiiiiiii i 93
8001 (o Ta @21 s TIPSR 95
T oY e s MR USSP 97
QISADIE oovtiiii it e e e e et et e et eat e et eraaaraaa 97
1SS 21 o) 1 98
FEteTe | e A (S 00 1= o L TP 98
FOCUSTISEEIEMENT Louuiiiiiiii e e e e e e e e e e et e e e e e e e e et e e aaaeeaaenns 98
GELEIEMENLS ...ttt 98

| vii

ST, SN 100
1SS 8 217 N 100
SEIALZEELEIMENTS ..iivuiiieeiiieeiir et e et e et e et e et e et e et ee et e e eaeeeaeneeatneeean e asneereneerenaeees 101
O 3leY 5 1s W 1 (s o 1o L PP PTPRPP 103
Yo /A 2 1 <R PN 103
ol 1 PPN 104
a1 RY] o) [P PTP PP 104
EIIADIE oot e e e e e aaas 105
L0 Yo1 LTSRN 105
GEEVALUE ...ttt ae e 105
PEESCIL ittt e e e e e e s 105
e [T PR PPN 106
e -1 7 PPN 106
KO T Yot (o) s EO PRSPt 107
What 18 DINAING? ..ovvvvviiiiiiiiiiiiiii 107
Prototype to the rescuelooooiiiiiiiiiiii 108
DI it e 108
DINAASEVENTIASTENET 1iivuiiiiiiiiieeiiii e et e et e et et e et e et e e et e et ae e et e eaieesaeestn e ereaeareneeses 109
I R T o PN 111
Creatingahash ... 111
<72 Yol o NN 112
IMISPECE .ttt 113
ROy e 113
80 1C ¥y T O TP PP PPPPPPPORR 113
(<1 1010)£ 114
tOQUETYSEIING ..oooiiiiiiiiiii 114
L2211 Lo PP 115
2/ o Y [o N 117
N s PPNt 117
1 (e PP 118
G 06 o o K 118
O ettt 119
{1 AN BT o] o1 S UPRSPTRt 121
What becomes PossIbIeoovuiiiiiiiiiiiiiii 121
o oSSR 122
15T 0 S PP 122
1001070 1o ' = ' s 122
T4 ODBJECL ittt 123
o] (o3 s T PP 123
1 (701 E PRSPPI 124
8 oot PP 124
ROy e 125
221G TP 125
15. ODBJECLRANGE ...ttt 127

viii | Prototype 1.5

F oLl L T (<SRN 128

16. PetiodiCalEXECULET ...ciiiiiiiiiiiiii it 129
Creating a PeriodicalEX@CULer ... 129
] 0] o PP PO PPPPPPPINS 130
17, POSIEION ittt ettt e ettt e e e e eaeas 131
ADSOIULIZE . 131
CLOMIE e 131
CUMUIAIVEOTESCE oiiiiiiiiiiii e 132
OFFSEEPALEIIL L.uviiiiiiiiiiii e 132
OVEIIAD <o 132
PAZE it 133
POSIHONEAOLESEE «oeeeeeiiiiiiiiiiiiii i 133
PLEPALEC ittt e 134
PEAlOFESEt .ot 134
FRIALIVIZE ittt 134
WILIILL ©evvviiiiii i 134
withinIncludingScrolloffSets 135
L8 PLOLOLYPE ettt 137
Your version Of PLOTOTYPE ...cevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 137
Browser featuresooocvviiiiiiiiiiiiii 137
Default iterators and fUNCHOMNSccooiiiiiiiiiiiiiiiiiiii e 138
OO P PO O PPPPPPPPTORPPIN 138
eMPLYFUNCHON L.oiiiiiiiiiiii 138
190 SHING wovviiiiiiiiiiiii 139
CAMELIZE .one e 139
CAPILALIZE ... 139
ASNEIIZE coiiiiiiiiiii e 140
esCaPEHTIMLL ..o 140
EVAISCIIPES ..ttt 141
EXTIACESCIIPES wovviiiiieiiiiiiiiie ettt e 141
GSUD Lottt 142
TMISPECL 1.ttt e 143
PALSEQIUETY .eiiiiiiiiiiiiiiiiii ittt 143
SCALL .ttt e ettt e ettt oo et e e e e e e e e e e et e e e e e e e e e e e eeeeeeaaaa 143
L6 o PP OPPPPP 144
SEEIPSCIIPES - 144
SEEPTAZS «ovvvviiiiiiiiiiiiiiii 145
SUD Lottt 145
]8T PP 146
EOALTAY Lottt 146
tOQUETYPArAMS L..uuiiiiiiiiiiiii s 147
Lo e e O OOOPOPSPPPPE 148
UILACTSCOLE ittt e ettt et e ettt e e e ettt s e e e e et e e et s e e e e e e eeananaaaes 148
unescaPeHTIMLL ..o 149
20. TEMPLALE .ttt 151

lix

Straight forward temMPIAtEseuiiiiiiiiii e 151

Templates are meant to be reUSEduuiiiiiiiiiiiiiiiiiiiiii 152
ESCAPE SEUENCE L.uuvviiiiiiiiiiiiii s 152
CUSEOIMY SYIIEAKES .eevvineeiriinetiriineetenti e et et e et eat e et ent e et ena e et ena e eeenaaeeeena e eeanan e eennanees 152
EVALUATE 1ouiiiniiit ittt et et e et e et et et et ettt e e et e ea e e et et at et et et araaas 153
21, TIMEAODSEIVEL .iituiiiiteiiie e et e et e et e e e e e e e et e e et e e et e e e bt e e st e e st e e aaa e saaaeeaaaeeas 155
FOrm. Element.ODBSEIVEL t.uuuiiieiiii et ee it et et e e e et e et e e et e e s e e et e e eaeeeereeeaeneesanaeerens 156
| Qo3 % W @] ST 0/ U PP P PTPP 156

x | Prototype 1.5

Chapter

Utility Methods

Prototype provides a number of “convenience” methods. Most are aliases of other Prototype methods, with
the exception of the $ method, which wraps DOM nodes with additional functionality.

These utility methods all address scripting needs that are so common that their names were made as concise
as can be. Hence the $-based convention.

The most commonly used utility method is without doubt $ (), which is, for instance, used pervasively with-
in Prototype’s code to let you pass either element IDs or actual DOM element references just about any-
where an element argument is possible. It actually goes way beyond a simple wrapper around docu-
ment.getElementById; check it out to see just how useful it is.

These methods are one of the cornerstones of efficient Prototype-based JavaScript coding. Take the time to
learn them well.

$(id | element) -> HTMLElement
$((id | element)...) -> [HTMLElement...]

If provided with a string, returns the element in the document with matching ID; otherwise returns the
passed element. Takes in an arbitrary number of arguments. All elements returned by the function are exten-
ded with Prototype DOM extensions.

The $ function is the cornerstone of Prototype, its Swiss Army knife. Not only does it provide a handy alias
for document . getElementById, it also lets you pass indifferently IDs (strings) or DOM node references
to your functions:

function foo(element) {
element = $(element);
/* rest of the function... */

Excample 1.1.

Code written this way is flexible — you can pass it the ID of the element or the element itself without any

type sniffing.

Invoking it with only one argument returns the element, while invoking it with multiple arguments returns
an array of elements (and this works recursively: if you're twisted, you could pass it an array containing some
arrays, and so forth). As this is dependent on getElementById, W3C specsl apply: nonexistent IDs will
yield null and IDs present multiple times in the DOM will yield erratic results. If you're assigning the
same ID to multiple elements, you're doing it wrong!

The function also extends every returned element with Element . extend so you can use Prototype's
DOM extensions on it. In the following code, the two lines are equivalent. However, the second one feels

significantly more object-oriented:

// Note quite OOP-like...
Element.hide('itemId');

// A cleaner feel, thanks to guaranted extension
$('itemId') .hide();

Excample 1.2.

However, when using iterators, leveraging the $ function makes for more elegant, more concise, and also

more efficient code:

["iteml', 'item2', 'item3'].each(Element.hide);
// The better way:
$('iteml', 'item2', 'item3').invoke('hide');

Example 1.3.

See How Prototype extends the DOM for more info.

! http:/ /www.w3.0rg/TR/DOM-Level-2-Core/ core.html#ID-getEIBId
http:/ /http:/ /www.prototypejs.org/learn/extensions

2 | Chapter 1. Utility Methods

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-getElBId
http://http://www.prototypejs.org/learn/extensions

$$

$$(cssRule...) -> [HTMLElement...]

Takes an arbitrary number of CSS selectors (strings) and returns a document-order array of extended DOM

elements that match any of them.

Sometimes the usual tools from your DOM arsenal -- document . getElementById () encapsulated by
$(), getElementsByTagName () and even Prototype's very own getElementsByClassName () exten-
sions -- just aten't enough to quickly find our elements ot collections of elements. If you know the DOM

tree structure, you can simply resort to CSS selectors to get the job done.

Performance: when better alternatives should be used instead of $%

Now, this function is powerful, but if misused, it will suffer performance issues. So here are a few guidelines:

* Ifyou're just looking for elements with a specific CSS class name among their class name set,
use Prototype's document . getElementsByClassName () extension.

* Better yet: if this search is constrained within a given container element, use the Ele-
ment.getElementsByClassName () extension.

Those methods should be favored in the case of simple CSS-class-based lookups, because they're, at any

rate, faster than $$. On browsers supporting DOM Level 3 XPath3, they're potentially blazing fast.

Now, if you're going for more complex stuff, indeed use $$. But use it well. The $$ function searches, by
default, the whole document. So if you can, scope your CSS rules as early as you can, e.g. by having them

start with ID selectors. That'll help reduce the search tree as fast as possible, and speed up your operation.

$$('div")
// -> all DIVs in the document. Same as document.getElementsByTagName('div')!

$$('#contents"')
// -> same as $('contents'), only it returns an array anyway.

$$('1i.faux")
// -> all LI elements with class 'faux'

$$('#contents a[rel]l"')
// -> all links inside the element of ID "contents" with a rel attribute

$S('alhref="#"]")
// -> all links with a href attribute of value "#" (eyeew!)

$$('#navbar 1i', '#sidebar 1i')
// -> all links within the elements of ID "navbar" or "sidebar"

Example 1.4.

? http:/ /www.w3.org/TR/DOM-Level-3-XPath/xpath.html

$$13

http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

Supported CSS syntax

The $$ function does not rely on the browser's internal CSS parsing capabilities (otherwise, we'd be in cross-
browser trouble...), and therefore offers a consistent set of selectors across all supported browsers. The flip
side is, it currently doesn't support as many selectors as browsers that are very CSS-capable. Here is the cur-
rent set of supported selectors:

* Type selector: tag names, as in div.

* Descendant selector: the space(s) between other selectors, as in #a 11.

¢ Attribute selectors: the full CSS 2.1 set of [attr], [attr=value], [attr~=value] and
[attr|=value]. It also supports [attr!=value]. If the value you're matching against includes a
space, be sure to enclose the value in quotation marks ([title="Hello World!"]).

e C(lass selector: CSS class names, as in .highlighted or .example.wrong.

e ID selector: as in #1iteml.

However, it currently does not support child selectors (>), adjacent sibling selectors (+), pseudo-elements
(e.g. rafter) and pseudo-classes (e.g. :hover).

$A

$A(iterable) -> actualArray

Accepts an array-like collection (anything with numeric indices) and returns its equivalent as an actual Array

object. This method is a convenience alias of Array . from, but is the preferred way of casting to an Array.

The primary use of $A () is to obtain an actual Array object based on anything that could pass as an array
(e.g. the NodeList or HTMLCollection objects returned by numerous DOM methods, or the predefined

arguments reference within your functions).

The reason you would want an actual Array is simple: Prototype extends Array to equip it with numerous
extra methods, and also mixes in the Enumerable module, which brings in another boatload of nifty meth-

ods. Therefore, in Prototype, actual Arrays trump any other collection type you might otherwise get.

The conversion performed is rather simple: null, undefined and false become an empty array; any ob-
ject featuring an explicit toArray method (as many Prototype objects do) has it invoked; otherwise, we as-
sume the argument "looks like an array” (e.g features a length property and the [] operator), and iterate

over its components in the usual way.

4

The well-known DOM method document.getElementsByTagName () doesn't return an Array, buta
Nodelist object that implements the basic array "interface." Internet Explorer does not allow us to extend
Enumerable onto NodelList.prototype, so instead we cast the returned NodeList to an Array:

* http:/ /www.w3.0rg/ TR/DOM-Level-2-Core/ core. htmI#ID-A6C9094

4 | Chapter 1. Utility Methods

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-A6C9094

var paras = $A(document.getElementsByTagName('p'));
paras.each(Element.hide);
$(paras.last()).show();

Example 1.5.

Notice we had to use each and Element.hide because $A doesn't perform DOM extensions, since the ar-
ray could contain anything (not just DOM elements). To use the hide instance method we first must make
sure all the target elements are extended:

$A(document.getElementsByTagName('p')).map(Element.extend).invoke('hide');

Example 1.6.

Want to display your arguments easily? Array features a join method, but the arguments value that exists
in all functions does not inherit from Array. So, the tough way, or the easy way?

// The hard way...
function showArgs() {
alert(Array.prototype.join.call(arguments, ', '));

}

// The easy way...

function showArgs() {
alert($A(arguments).join(', '));

}

Example 1.7

SF

$F(element) -> value

Returns the value of a form control. This is a convenience alias of Form.Element.getValue. Refer to it
for full details.

$H
$H([obj]) -> Hash

Creates a Hash (which is synonymous to “map” or “associative array” for our purposes). A convenience

wrapper around the Hash constructor, with a safeguard that lets you pass an existing Hash object and get it

$FI5

back untouched (instead of uselessly cloning it).

The $H function is the shorter way to obtain a hash (prior to 1.5 final, it was the on/y proper way of getting

one).

$R

$R(start, end[, exclusive = false]) -> ObjectRange

Creates a new ObjectRange object. This method is a convenience wrapper around the
[ObjectRange](/api/objectRange constructor, but $R is the preferred alias.

ObjectRange instances represent a range of consecutive values, be they numerical, textual, or of another
type that semantically supports value ranges. See the type’s documentation for further details, and to discov-

er how your own objects can support value ranges.

The $R function takes exactly the same arguments as the original constructor: the lower and upper bounds
(value of the same, proper type), and whether the upper bound is exclusive or not. By default, the upper

bound is inclusive.

$R(O, 10).1include(10)
// -> true

$A($R(O, 5)).join(', ")
/1 -> 0, 1, 2, 3, 4, 5"

$A($R('aa', 'ah')).join(', ")
// -> 'aa, ab, ac, ad, ae, af, ag, ah'

$R(0, 10, true).include(l0)
// -> false

$R(O, 10, true).each(function(value) {
// invoked 10 times for value = 0 to 9
IO

Example 1.8.

Note that ObjectRange mixes in the Enumerable module: this makes it easy to convert a range to an Ar -
ray (Enumerable provides the toArray method, which makes the $A conversion straightforward), or to it-
erate through values. (Note, however, that getting the bounds back will be more efficiently done using the
start and end properties than calling the min () and max () methods).

Sw

$w(String) -> Array

Splits a string into an Array, treating all whitespace as delimiters. Equivalent to Ruby's %w{foo bar} or
Perl's qw (foo bar).

6 | Chapter 1. Utility Methods

This is one of those life-savers for people who just hate commas in literal arrays :-)

$w('apples bananas kiwis')
// -> ['apples', 'bananas', 'kiwis']

Example 1.9.

This can slightly shorten code when writing simple iterations:

$w('apples bananas kiwis').each(function(fruit){
var message = 'I like ' + fruit
// do something with the message

3]

Excample 1.10.

'This also becomes sweet when combined with Element functions:

$w('ads navbar funkyLinks').each(Element.hide);

Example 1.11.

Try.these
Try.these(Function...) -> firstOKResult

Accepts an arbitrary number of functions and returns the result of the first one that doesn't throw an error.

This method provides a simple idiom for trying out blocks of code in sequence. Such a sequence of attempts

usually represents a downgrading approach to obtaining a given feature.

In this example from Prototype's Ajax library, we want to get an XMLHt tpRequest object. Internet Ex-
plorer 6 and earlier, however, does not provide it as a vanilla JavaScript object, and will throw an error if we

attempt a simple instantiation. Also, over time, its proprietary way evolved, changing COM interface names.
P p) > 1ts prop y way > ging

Try. these will try several ways in sequence, from the best (and, theoretically, most widespread) one to the

oldest and rarest way, returning the result of the first successful function.

If none of the blocks succeeded, Try. these will return undefined, which will cause the getTransport

method in the example below to return false, provided as a fallback result value.

Try.these | 7

getTransport: function() {
return Try.these(
function() { return new XMLHttpRequest() },
function() { return new ActiveXObject('Msxml2.XMLHTTP') },
function() { return new ActiveXObject('Microsoft.XMLHTTP') }
) || false;

Excample 1.12.

document.getElementsByClassName

document.getElementsByClassName(className[, element]) -> [HTMLElement...]

Retrieves (and extends) all the elements that have a CSS class name of className. The optional element

parameter specifies a parent element to search under.
Note that each returned element has been extended.

<body>
<div id="one" class="foo">Single class name</div>
<div id="two" class="foo bar thud">Multiple class names</div>
<ul id="1list">
<1i id="item_one" class="thud">List item 1</1i>
List item 2</1i>
<1i id="item_two" class="thud">List item 3</1i>

</body>

document.getElementsByClassName('foo") ;
// -> [HTMLElement, HTMLElement] (div#one, div#two)

document.getElementsByClassName('thud');
// -> [HTMLElement, HTMLElement, HTMLElement] (div#two, li#item_one, li#item_two);

document.getElementsByClassName ('thud', $('list'));
// -> [HTMLElement, HTMLElement] (li#item_one, li#item_two)

Example 1.13.

8 | Chapter 1. Utility Methods

Chapter

Ajax

Prototype offers three objects to deal with AJAX communication, which are listed below. With Prototype,
going Ajaxy is downright simple! All three objects share a common set of options, which are discussed sep-
arately.

The articles below provide you with several examples. The Learn section also features a more narrative, tu-
. o1
torial-style article .

Ajax Options

This details all core options (shared by all AJAX requesters) and callbacks.

All requester object in the Aj ax namespace share a common set of options and callbacks. Callbacks are
called at various points in the life-cycle of a request, and always feature the same list of arguments. They are
passed to requesters right along with their other options.

Common options

Option Default Description

asynchronous true Determines whether XMLHt tpRequest
is used asynchronously or not. Since syn-
chronous usage is rather unsettling, and
usually bad taste, you should avoid chan-
ging this. Seriously.

contentType "application/ The Content-Type header for your re-
x-www-form-urlencoded'’ quest. You might want to send XML in-

! http://http:/ /www.prototypejs.org/learn/introduction-to-ajax

http://http://www.prototypejs.org/learn/introduction-to-ajax
http://http://www.prototypejs.org/learn/introduction-to-ajax

Option

Default

Description

stead of the regular URL-encoded
format, in which case you would have to

change this.

encoding

"UTF-8'

The encoding for your request contents.
It is best left as is, but should weird en-
coding issues arise, you may have to
tweak it in accordance with other encod-
ing-related parts of your page code and

server side.

method

"post’

The HTTP method to use for the re-
quest. The other widespread possibility is
'get'. As a Ruby On Rails special, Pro-
totype also reacts to other verbs (such as
'put' and 'delete’ by actually using
'post' and putting an extra '_method'
parameter with the originally requested

method in there.

parameters

The parameters for the request, which
will be encoded into the URL for a
'get' method, or into the request body
for the other methods. This can be
provided either as a URL-encoded string
or as any Hash-compatible object
(basically anything), with properties rep-

resenting parameters.

postBody

None

Specific contents for the request body on
a 'post’' method (actual method, after
possible conversion as described in the
method opt ion above). If it is not
provided, the contents of the paramet-
ers option will be used instead.

requestHeaders

See text

Request headers can be passed under

two forms:

* Asan object, with properties

representing headers.

* Asan array, with even-index (0,
2...) elements being header
names, and odd-index (1, 3...)

elements being values.

10 | Chapter 2. Ajax

Option Default Description

Prototype automatically provides a set of
default headers, that this option can

override and augment:

e X-Requested-With is set to
'XMLHttpRequest'.

e X-Prototype-Version
provides Prototype's current vet-
sion (e.g. 1.5.0).

* Accept defaults to 'text/
javascript, text/html,
application/xml, text/
xml, */*!

e Content-type is built based on
the contentType and encod-
ing options.

Common callbacks

When used on individual instances, all callbacks (except onException) are invoked with two parameters:
the XMLHt tpRequest object and the result of evaluating th e X-JSON response header, if any (can be nul1l).
They also execute in the context of the requester object (e.g. Ajax.Request), bound to the this referen ce.

For another way of describing their chronological order and which callbacks are mutually exclusive, see
Ajax.Request.

Callback Description

onComplete Triggered at the very end of a request's life-cycle, once the request completed,
status-specific callbacks were called, and possible automatic behaviors were pro-
cessed.

onException Triggered whenever an XHR error arises. Has a custom signature: the first argu-

ment is the requester (e.g. an Ajax.Request instance), the second is the exception
object.

onFailure Invoked when a request completes and its status code exists but is not in the 2xy

family. This is skipped if a code-specific callback is defined, and happens before on-
Complete.

onInteractive [(Not guaranteed) Triggered whenever the requester receives a part of the response
(but not the final part), should it be sent in several packets.

onLoaded (Not guaranteed) Triggered once the underlying XHR object is setup, the connec-
tion open, and ready to send its actual request.

Ajax Options | 11

Callback Description

onlLoading (Not guaranteed) Triggered when the underlying XHR object is being setup, and its

connection opened.

onSuccess Invoked when a request completes and its status code is undefined or belongs in
the 2xy family. This is skipped if a code-specific callback is defined, and happens be-
foreonComplete.

onUninitialized |(Not guaranteed) Invoked when the XHR object was just created.

onXYZ With XYZ being an HTTP status code for the response. Invoked when the re-
sponse just completed, and the status code is exactly the one we used in t he call-

back name. Prevents execution of onSuccess / onFailure. Happens before on-

Complete.

Responder callbacks

One callback is available only to responders, not to individual AJAX requester objects.

When used on responders, all callbacks (except onException and onCreate) are invoked with three para-
meters: the requester (e.g. Ajax.Request) object, the XML HttpRequest object and the result of evaluat-
ing the X-JSON response header, if any (can be null). They also execute in the context of the responder,

bound to the this reference.

Callback Description

onCreate Triggered whenever a requester object from the Ajax namespace is created, after

its parameters where adjusted and its before its XHR connection is opened. This

takes two arguments: the requester object and the underlying XHR object.

Ajax.PeriodicalUpdater

new Ajax.PeriodicalUpdater(container, url[, options])
Periodically performs an AJAX request and updates a containet’s contents based on the response text. Of-
fers a mechanism for “decay,” which lets it trigger at widening intervals while the response is unchanged.

This object addresses the common need of periodical update, which is used by all sorts of “polling” mech-

anisms (e.g. in an online chatroom or an online mail client).

The basic idea is to run a regular Ajax.Updater at regular intervals, monitoring changes in the response
text if the decay option (see below) is active.

Additional options

Ajax.PeriodicalUpdater features all the common options and callbacks, plus those added by
Ajax.Updater. It also provides two new options that deal with the original period, and its decay rate (how
Rocket Scientist does that make us sound, uh?!).

12 | Chapter 2. Ajax

Option Default Description

frequency 2 Okay, this is not a frequency (e.g 0.5Hz),
but a period (i.e. 2 number of seconds).
Don’t kill me, I didn’t write this one!
This is the minimum interval at which
AJAX requests are made. You don’t
want to make it too short (otherwise you
may very well end up with multiple re-
quests in parallel, if they take longer to
process and return), but you technically

can provide a number below one, e.g.
0.75 second.

decay 1 This controls the rate at which the re-
quest interval grows when the response
is unchanged. It is used as a multiplier on
the current period (which starts at the
original value of the frequency para-
meter). Every time a request returns an
unchanged response text, the current
period is multiplied by the decay. There-
fore, the default value means regular re-
quests (no change of interval). Values
higher than one will yield growing inter-
vals. Values below one are dangerous:
the longer the response text stays the
same, the more often you’ll check, until
the interval is so short your browser is
left with no other choice than suicide.
Note that, as soon as the response text

does change, the current period resets to

the original one.

To better understand decay, here is a small sequence of calls from the following example:

new Ajax.PeriodicalUpdater('items', '/items', {
method: 'get', frequency: 3, decay: 2
5D 8

Example 2.1.

Ajax.PeriodicalUpdater | 13

Call#

When?

Decay be-

fore

Response
changed?

Decay after

Next peri-
od

Comments

00:00

n/a

3

Response is
deemed
changed,
since there
is no prior
response to

compare to!

00:03

yes

Response
did change
again: we
“reset” to 1,
which was
already the
decay.

00:06

no

Response
didn’t
change: de-
cay aug-
ments by
the decay
option
factor: we’re
waliting
longer

now...

00:12

no

12

Still no
change,
doubling

again.

00:24

no

24

Jesus, is this
thing going

to change or
what?

00:48

yes

Ah, finally!
Resetting
decay to 1,
and there-
fore using
the original
period.

14 | Chapter 2. Ajax

Disabling and re-enabling a PeriodicalUpdater

You can pull the brake on a running PeriodicalUpdater by simply calling its stop method. If you wish
to re-enable it later, just call its start method. Both take no argument.

/sy Beware! Not a specialization!

/

/

/

Ajax.PeriodicalUpdater is not a specialization of Ajax.Updater, despite its name. When
using it, do not expect to be able to use methods normally provided by Ajax.Request and
“inherited” by Ajax.Updater, such as evalJSON or getHeader. Also the onComplete call-
back is highjacked to be used for update management, so if you wish to be notified of every
successful request, use onSuccess instead (beware: it will get called before the update is pet-

formed).

Ajax.Request

new Ajax.Request(url[, options])

Initiates and processes an AJAX request.

This object is a general-purpose AJAX requester: it handles the life-cycle of the request, handles the boiler-

plate, and lets you plug in callback functions for your custom needs.

In the optional options hash, you usually provide a onComplete and/or onSuccess callback, unless you're
in the edge case where you're getting a JavaScript-typed response, that will automatically be eval'd.

For a full list of common options and callbacks, see Ajax Options.

The only proper way to create a requester is through the new operator. As soon as the object is created, it

initiates the request, then goes on processing it throughout its life-cyle.

A basic example

URL = 'http://www.google.com/search?q=Prototype’;
new Ajax.Request('/proxy?url=" + encodeURIComponent(URL), {
method: 'get',
onSuccess: function(transport) {
var notice = $('notice');
if (transport.responseText.match(/<a class=1 href="http:\/\/prototypejs.org/))
notice.update('Yeah! You are in the Top 10!').setStyle({ background: '#dfd' });
else
notice.update('Damn! You are beyond #10...').setStyle({ background: '#fdd' });
}
s

Excample 2.2.

Ajax.Request | 15

Request life-cycle

Underneath our nice requester objects lies, of course, XMLHt tpRequest. The defined life-cycle is as follows:

1.

A

Created

Initialized

Request sent

Response being received (can occur many times, as packets come in)

Response received, request complete

As you can see in Ajax options, Prototype's AJAX objects define a whole slew of callbacks, which are

triggered in the following order:

onCreate (this is actually a callback reserved to AJAX global responders)
onUninitialized (maps on Created)

onLoading (maps on Initialized)

onLoaded (maps on Request sent)

onInteractive (maps on Response being received)

onXYZ (numerical response status code), onSuccess or onFailure (see below)

onComplete

The two last steps both map on Response received, in that order. If a status-specific callback is defined, it gets

invoked. Otherwise, if onSuccess is defined and the response is deemed a success (see below), it is in-

voked. Otherwise, if onFailure is defined and the response is 7o deemed a sucess, it is invoked. Only after

that potential first callback is onComplete called.

A note on portability

Depending on how your browser implements XMLHt tpRequest, one or more callbacks may
never be invoked. In particular, onLoaded and onInteractive are not a 100% safe bet so far.
However, the global onCreate, onUninitialized and the two final steps are very much

guaranteed.

onSuccess and onFailure, the under-used callbacks

Way too many people use Ajax.Requester in a similar manner to raw XHR, defining only an onCom-

plete callback even when they're only interested in "successful" responses, thereby testing it by hand:

16 | Chapter 2. Ajax

// This is too bad, there's better!
new Ajax.Requester('/your/url', {
onComplete: function(transport) {
if (200 == transport.status)
// yada yada yada
}
5)s

Example 2.3.

First, as described below, you could use better "success" detection: success is generally defined, HTTP-wise,

as either no response status or a "2xy" response status (e.g,, 201 is a success, t00). See the example below.

Second, you could dispense with status testing altogether! Prototype adds callbacks specific to success and

failure, which we listed above. Here's what you could do if you're only interested in success, for instance:

new Ajax.Requester('/your/url', {
onSuccess: function(transport) {
// yada yada yada
}
s

Example 2.4.

Automatic JavaScript response evaluation

Any response whose MIME type is missing or JavaScript-related will automatically be passed to eval. Be-
fore yelling on what a security breach that is, remember that XHR is usually used on URLs from the same
host that originated the current page (this is the famous Same Origin Policy, or SOP): these scripts are sup-

posed to be under your control.
What this means is, you don't even need to provide a callback to leverage pure-JavaScript AJAX responses.
That's pretty cool, wouldn't you say? The list of JavaScript-related MIME types handled by Prototype is:

e application/ecmascript

* application/javascript

e application/x-ecmascript

e application/x-javascript

¢ text/ecmascript

¢ text/javascript

* text/x-ecmascript

¢ text/x-javascript

The MIME type string is examined in a case-insensitive mannet.

Ajax.Request | 17

Methods you may find useful

Requester objects provide several methods that can come in handy in your callback functions, especially
once the request completed. Since alllocal callbacks execute in the requestet's context, you're able to use
these methods in your callback code.

Is the response a successful one?

The success () method examines the XHR's status property, and follows general HTTP guidelines: un-
known status is deemed successful, as is the whole 2xy status code family. It's a generally better way of test-
ing your response than the usual 200 == transport.status.

Getting HTTP response headers

While you can obtain response headers from the XHR object, using its getResponseHeader method, this

makes for slightly verbose code, and several implementations may raise an exception when the header is not
found. To make this easier, you can use the getHeader method, which just delegates to the longer version

and returns nul1l should an exception occur:

new Ajax.Requester('/your/url', {
onSuccess: function() {
// Note how we brace against null values
if ((this.getHeader('Server') || '').match(/Apache/))
++gApacheCount;
// Remainder of the code
}
B)s

Excample 2.5.

Evaluating JSON headers

Some backends will return JSON not as response text, but in the X-JSON header. You can directly eval its
content and get the result by calling the evalJSON m ethod, which returns null if there is no such header,
ot the contents is invalid. For robustness, the headet's content is wrapped in parentheses ptior to evaluat
ion.

You actually don't even need to call this method yourself, as Prototype automatically calls it and passes the

result as the final argument to any callback (except f or onCreate). So the following code is suboptimal:

new Ajax.Request('/your/url', {
onSuccess: function() {
var json = this.evalJSON(); // Uselessly evals a second time!
// Remainder of the code
}
55

Example 2.6.

18 | Chapter 2. Ajax

Prefer the following approach:

new Ajax.Request('/your/url', {
onSuccess: function(transport, json) {
// Remainder of the code
}
B)s

Example 2.7.

Ajax.Responders

Ajax.Responders.register(responder)
Ajax.Responders.unregister(responder)

A repository of global listeners notified about every step of Prototype-based AJAX requests. Sometimes,
you need to provide generic behaviors over all AJAX operations happening in the page (through
Ajax.Request,Ajax.Updater or Ajax.PeriodicalUpdater).

For instance, you might want to automatically show an indicator when an AJAX request is ongoing, and
hide it when none are. You may well want to factor out exception handling as well, logging those some-

where on the page in a custom fashion. The possibilities are plenty.

To achieve this, Prototype provides Ajax.Responders, which lets you register (and if you wish to, unre-
gister later) responders, which are objects with properly-named methods. These names are the regular call-

back names, and your responders can implement any set of interest.

For instance, Prototype automatically registers a responder that maintains a nifty variable:
Ajax.activeRequestCount. This contains, at any time, the amount of currently active AJAX requests
(those created by Prototype, anyway), by monitoring their onCreate and onComplete events. The code for
this is fairly simple:

Ajax.Responders.register ({
onCreate: function() {
Ajax.activeRequestCount++;
Bo
onComplete: function() {
Ajax.activeRequestCount--;
}
s

Example 2.8.

All callbacks in the life-cycle are available; actually, onCreate is only available to responders, as it wouldn’t
make a lot of sense to individual requests: you do know when your code creates them, don’t your It is
triggered even before the XHR connection is opened, which makes it happen right before onUninitial-
ized.

Ajax.Responders | 19

@ Unregister: remember the reference...

As always, unregistering something requires you to use the very same object you used at regis-
tration. So if you plan on unregistering a respondet, be sure to define it first, then pass the ref-

erence to register, and finally, when the time comes, to unregister.

Ajax.Updater

new Ajax.Updater(container, url[, options])

Performs an AJAX request and updates a container’s contents based on the response text.

Ajax.Updater is a specialization of Ajax.Request: everything about the latter is true for the former. If
you’re unfamiliar with Ajax.Request, go read its documentation before going ahead with this one.

A simple example

new Ajax.Updater('items', '/items', {
parameters: { text: $F('text') }
5)s

Excample 2.9.

A note about timing

The onComplete callback will get invoked after the update takes place.

Additional options

Since the goal of Ajax.Updater is specifically to update the contents of a DOM element (container)
with the response text brought back by the AJAX request, it features a couple of new options, in addition to

the common options set. These are:

20 | Chapter 2. Ajax

Option Default Description

evalScripts false This determines whether <script> ele-
ments in the response text are left in
(and therefore evaluated by the browser)
or not.

insertion None By default, Element .update is used,
which replaces the whole contents of the
container with the response text. You
may want to instead insert the response
text around existing contents. You just
need to pass a valid Insertion object
for this, such as Insertion.Bottom.

In the following example, we assume that creating a new item through AJAX returns an XHTML fragment
representing only the new item, which we need to add within our list container, but at the bottom of its ex-

isting contents. Here it goes:

new Ajax.Updater('items', '/items',6 {
parameters: { text: $F('text') },
insertion: Insertion.Bottom

s

Excample 2.10.

Single container, or success/failure alternative?

The examples above all assume you're going to update the same container whether your request succeeds or
fails. There may very well be times when you don’t want that. You may want to update only for successful
requests, or update a different container on failed requests.

To achieve this, you can pass an object instead of a DOM element for the container parameter. This ob-
ject must exhibit a success property, whose value is the container to be updated upon successful requests.

If you also provide it with a failure property, its value will be used as the container for failed requests.

In the following code, only successtul requests get an update:

new Ajax.Updater({ success: 'items' }, '/items',6 {
parameters: { text: $F('text') },
insertion: Insertion.Bottom

IO

Excample 2.11.

Ajax.Updater | 21

The next example assumes failed requests will feature an error message as response text, and will go on to
update another element with it, probably a status zone.

new Ajax.Updater({ success: 'items',6 failure: 'notice' }, '/items', {
parameters: { text: $F('text') },
insertion: Insertion.Bottom

s

Excample 2.12.

22 | Chapter 2. Ajax

Chapter

Array

Prototype extends all native Javascript arrays with quite a few powerful methods.

This is done in two ways:

* It mixes in the Enumerable module, which brings a ton of methods in already.

* Itadds quite a few extra methods, which are documented in this section.

With Prototype, arrays become much, much more than the trivial objects we were used to manipulate, limit-
ing ourselves to using their length property and their [] indexing operator. They become very powerful
objects, that greatly simplify the code for 99% of the common use cases involving them.

Why you should stop using for...in to iterate (or never take it
up)

Many JavaScript authors have been misled into using the for...in JavaScript construct to loop over array
elements. This kind of code just won’t work with Prototype.

You see, the ECMA 262" standard, which defines ECMAScript 3rd edition, supposedly implemented by all
major browsers ncluding MSIE, defines numerous methods on Array (§15.4.4), including such nice methods
as concat, join, pop and push, to name but a few among the ten methods specified.

This same standard explicitely defines that the for...1in construct (§12.6.4) exists to enumerate the prop-
erties of the object appearing on the right side of the in keyword. Only properties specifically marked as
non-enumerable are ignored by such a loop. By default, the prototype and the length properties are so
marked, which prevents you from enumerating over array methods when using for...in. This comfort led

developers to use for...1in as a shortcut for indexing loops, when it is not its actual purpose.

! http:/ /www.ecma-international.org/publications/standards/Ecma-262.htm

http://www.ecma-international.org/publications/standards/Ecma-262.htm

However, Prototype has no way to mark the methods it adds to Array.prototype as non-enumerable.

Therefore, using for...in on arrays when using Prototype will enumerate all extended methods as well,

such as those coming from the Enumerable module, and those Prototype puts in the Array namespace

(described in this section, and listed further below).

What is a developer to do?

You can revert to vanilla loops:

}

Excample 3.1.

for (var index = 0; index < myArray.length; ++index) {
var item = myArray[index];
// Your code working on item here...

Or you can use iterators, such as each :

b)) 5

Excample 3.2.

myArray.each(function(item) {
// Your code working on item here...

This side-effect enforcement of the true purpose of for...in is actually not so much of a burden: as you’ll

see, most of what you used to loop over arrays for can be concisely done using the new methods provided

by Array or the mixed-in Enumerable module. So manual loops should be fairly rare.

A note on performance

Should you have a very large array, using iterators with /lexical closures (anonymous functions that
you pass to the iterators, that get invoked at every loop iteration), such as each, or relying on
repetitive array construction (such as uniq), may yield unsatisfactory performance. In such
cases, you're better off writing manual indexing loops, but take care then to cache the length

property and use the prefix ++ operator:

for (var index = 0, len = myArray.length; index < len; ++index) {
var item = myArray[index];
// Your code working on item here...

}

Example 3.3.

24 | Chapter 3. Array

clear

clear() -> Array

Clears the array (makes it empty).

var guys = ['Sam', 'Justin', 'Andrew', 'Dan'];
guys.clear();

/1 -> []

guys

/1 -> []

Example 3.4.

clone

clone() -> newArray

Returns a duplicate of the array, leaving the original array intact.

var fruits = ['Apples', 'Oranges'];
var myFavs = fruits.clone();
myFavs.pop();
// fruits -> ['Apples', 'Oranges']
// myFavs -> ['Apples']

Example 3.5.

compact

compact() -> newArray

Returns a new version of the array, without any null/undefined values.

['frank', , 'sue', , 'sally', null].compact()
// -> ['frank', 'sue', 'sally']

Example 3.6.

clone | 25

each

each(iterator) -> Array

Iterates over the array in ascending numerical index order.

This is actually the each method from the mixed-in Enumerable module. It is documented here to clearly

state the order of iteration.

first

first() -> value

Returns the first item in the array, or undefined if the array is empty.

['Ruby', 'Php', 'Python'].first()
// -> 'Ruby"

[1.first()
// -> undefined

Excample 3.7.

flatten

flatten() -> newArray

Returns a “flat” (one-dimensional) version of the array. Nested arrays are recursively injected “inline.” This

can prove very useful when handling the results of a recursive collection algorithm, for instance.

['frank', ['bob"', 'lisa'], ['jill', ['tom', 'sally']]].flatten()
// -> ['frank', 'bob', 'lisa', 'jill', 'tom', 'sally'l]

Excample 3.8.

from

Array.from(iterable) -> actualArray

Clones an existing array or creates a new one from an array-like collection.

This is an alias for the $A() method. Refer to its page for complete description and examples.

26 | Chapter 3. Array

indexOf

index0f (value) -> position
Returns the position of the first occurrence of the argument within the array. If the argument doesn’t exist
in the array, returns -1.

Note: this uses the == equivalence operator, not the === strict equality operator. The bottom example below

illustrates this.

Minor note: this uses a plain old optimized indexing loop, so there’s no risk of extensions being detected by
this method.

[3, 5, 6, 1, 20].1index0f (1)
/1 -> 3

[3, 5, 6, 1, 20].1index0f(90)
7y =® =i

[0, false, 15].1index0f(false)
// -> 0 instead of 1, because 0 == false!

Example 3.9.

inspect
inspect() -> String

Returns the debug-oriented string representation of an array. For more information on inspect methods,
see Object.inspect.

['Apples', {good: 'yes', bad: 'no'}, 3, 34].inspect()
// -> "['Apples', [object Object], 3, 34]"

Excample 3.10.

m Note

If you simply want to join the string elements of an array, use the native join method instead:

['apples', 'bananas', 'kiwis']l.join(', ")
// -> 'apples, bananas, kiwis'

inspect | 27

last

last() -> value

Returns the last item in the array, or undefined if the array is empty.

['Ruby', 'Php', 'Python'].last()
// -> 'Python'

[1.last()
// -> undefined

Excample 3.11.

reduce

reduce() -> Array | singleValue

Reduces arrays: one-element arrays are turned into their unique element, while multiple-element arrays are

returned untouched.

[3].reduce(); // -> 3

[3, 5].reduce(); // -> [3, 5]

Excample 3.12.

reverse

reverse([inline = truel) -> Array

Returns the reversed version of the array. By default, directly reverses the original. If inline is set to

false, uses a clone of the original array.

var nums = [3, 5, 6, 1, 20];
nums.reverse(false) // -> [20, 1, 6, 5, 3]

nums // -> [3, 5, 6, 1, 20]
nums.reverse() // -> [20, 1, 6, 5, 3]
nums // -> [20, 1, 6, 5, 3]

Example 3.13.

28 | Chapter 3. Array

size

size() -> Number

Returns the size of the array.
This is just a local optimization of the mixed-in size method from the Enumerable module, which avoids

array cloning and uses the array’s native length property.

toArray

toArray() -> newArray

This is just a local optimization of the mixed-in toArray from Enumerable.

This version aliases to clone, avoiding the default iterative behavior.

uniq
uniq() -> newArray

Produces a duplicate-free version of an array. If no duplicates are found, the original array is returned.

['Sam', 'Justin', 'Andrew', 'Dan', 'Sam'].uniq();
// -> ['Sam', 'Justin', 'Andrew', 'Dan']

['Prototype', 'prototype'l.uniq();
// -> ['Prototype', 'prototype'] because String comparison is case-sensitive

Example 3.14.

Performance considerations

On large arrays with duplicates, this method has a potentially large performance cost:

* Since it does not require the array to be sorted, it has quadratic complexity.

* Since it relies on JavaScript’s Array.concat, it will yield a new, intermediary array every time it en-

counters a new value (a value that wasn’t already in the result array).

More efficient implementations could be devised. This page will get updated if such an optimization is com-

mitted.

toArray | 29

without

without(value...) -> newArray

Produces a new version of the array that does not contain any of the specified values.

[3, 5, 6, 1, 20] .without(3)
// -> [5, 6, 1, 20]

[3, 5, 6, 1, 20] .without(20, 6)
// -> [3, 5, 1]

Example 3.15.

30 | Chapter 3. Array

Chapter

Class

Prototype’s object for class-based OOP.

Currently, inheritance is handled through Object.extend.

Create

create() -> Function

Returns an function that acts like a Ruby class.

Class.create() returns a function that, when called, will fire its own initialize method. This allows

for mote Ruby-like OOP. It also lets you more easily subclass by overriding a parent's constructot.

Example:

var Animal = Class.create();
Animal.prototype = {
initialize: function(name, sound) {

this.name = name;
this.sound = sound;
Bo
speak: function() {
alert(name + " says: " + sound + "!");
}
b5
var snake = new Animal("Ringneck", "hissssssssss");

snake.speak();
// -> alerts "Ringneck says: hissssssssss!"

var Dog = Class.create();

Dog.prototype = Object.extend(new Animal(),
initialize: function(name) {
this.name = name;
this.sound = "woof";
}
IO

var fido = new Dog("Fido");

fido.speak();
// -> alerts "Fido says: woof!"

Example 4.1.

{

32 | Chapter 4. Class

Chapter

Element

The Element object sports a flurry of powerful DOM methods which you can access either as methods of
Element (but that’s rather old-fashioned now) or directly as methods of an extended element (thanks to
Element.extend for that added bit of syntactic sugar).

Before you pursue, you really should read “How Prototype extends the DOM”" which will walk you through

the arcane inner workings of Prototype’s magic DOM extension mechanism.

<div id="message" class=""></div>

// Toggle the CSS class name of div#message
$('message').addClassName('read"');
// -> div#message

// You could also use a syntactic-sugar-free version:

Element.toggleClassName('message', 'read');
// -> div#message

Example 5.1.

Since most methods of Element return the element they are applied to, you can chain methods like so:

$('message').addClassName('read').update('I read this message!').setStyle({opacity: 0.5});

Example 5.2.

! http:/ /http:/ /www.prototypejs.org/learn/extensions

http://http://www.prototypejs.org/learn/extensions

addClassName

addClassName(element, className) -> HTMLElement

Adds a CSS class to element.

<div id="mutsu" class="apple fruit"></div>

$('mutsu').addClassName (' food")

$('mutsu').className

// -> 'apple fruit food'
$('mutsu').classNames ()

// -> ['apple', 'fruit', 'food'l]

Example 5.3.

addMethods

addMethods ([methods])

Takes a hash of methods and makes them available as methods of extended elements and of the Element
object.

Element.addMethods makes it possible to mix in your own methods to the Element object, which you can
later use as methods of extended elements - those returned by the $ () utility, for example - or as methods
of Element.

$(element) .myOwnMethod([args...]);

Excample 5.4.

Note that this will also works:

Element.myOwnMethod(element|id[, args...1);

Excample 5.5.

To add new methods, simply feed Element.addMethods with a hash of methods. Note that each method's
first argument bas o be element. Inside each method, remember to pass element to $() and to return it to
allow for method chaining if appropriate.

Here's what your hash should look like:

34 | Chapter 5. Element

var myVeryOwnElementMethods = {
myFirstMethod: function(element[, args...]1){
element = $(element);
// do something
return element;

b

mySecondMethod: function(element[, args...]){
element = $(element);
// do something else
return element;
}
b5

Example 5.6.

One last warning before you pursue: Element.addMethods has a built in security which prevents you from

overriding native element methods or properties (like getAttribute or innerHTML for instance), but

nothing prevents you from overriding one of Prototype's method, so watch whete you step!

Want clean, semantic markup, but need that extra <div> around your element, why not create a

wrap('tagName') Element method which encloses element in the provided tagName and returns the

wrapper?

Element.addMethods ({
wrap: function(element, tagName) ({
element = $(element);
var wrapper = document.createElement('tagName');
element.parentNode.replaceChild(wrapper, element);
wrapper.appendChild(element);
return Element.extend(wrapper);

s

Excample 5.7.

which you'll be able to use like this:

// Before:
<p id="first">Some content...</p>

$(element) .wrap('div');
// -> HTMLElement (div)

Example 5.8.

// After:
<div><p id="first">Some content...</p></div>

addMethods | 35

As you have thoughtfully decided that your wrap () method would return the newly created <div>, ready
for prime time thanks to Element.extend, you can immediately chain a new method to it:

Example 5.9.

$(element) .wrap('div').setStyle({backgroundImage: 'url(images/rounded-corner-top-left.png) top left'});

Are you using Ajax.Updater quite a bit around your web application to update DOM elements? Would

you want a quick and nifty solution to cut down on the amount of code you are writing ? Try this:

Element.addMethods ({
ajaxUpdate: function(element, url, options){
element = $(element);
element.update('");
new Ajax.Updater(element, url, options);
return element;
}
s

Example 5.10.

Now, whenever you wish to update the content of an element just do:

$(element).ajaxUpdate('/new/content"');
// -> HTMLElement

Excample 5.11.

This method will first replace the content of element with one of those nifty Ajax activity indicator. It will
then create a new Ajax.Updater, which in turn will update the content of element with its request result,

removing the spinner as it does.

Using Element.addMethods with no argument

There's a last dirty little secret to Element . addMethods. You can can call it without passing it an argument.
What happens then? Well, it simply iterates over all of Element.Methods,
Element.Methods.Simulated, Form.Methods and Form.Element.Methods and adds them to the rel-
evant DOM elements (Form.Methods only gets added to, well the form element while input, select and
textarea elements get extended with Form. Element.Methods).

When could that be usefull?

Imagine that you wish to add a method that deactivates a submit button and replaces its text with
something like "Please wait...". You wouldn't want such a method to be applied to any element, would you?

So here is how you would go about doing that:

36 | Chapter 5. Element

Form.Element.Methods.processing = function(element, text) {
element = $(element);

if (element.tagName.toLowerCase() == 'input' && ['button', 'submit'].include(element.type))
element.value = typeof text == 'undefined' ? 'Please wait...' : text;
return element.disable();

b5

Element.addMethods () ;

Example 5.12.

ancestors

ancestors(element) -> [HTMLElement...]

Collects all of element’s ancestors and returns them as an array of extended elements.

The returned array’s first element is element’s direct ancestor (its parentNode), the second one is its
grandparent and so on until the htm1 element is reached. htm1l will always be the last member of the array...

unless you are looking for its ancestors obviously. But you wouldn’t do that, would you ?
Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<html>
[..]
<body>
<div id="father">
<div id="kid">
</div>
</div>
</body>
</html>

$('kid').ancestors();
// -> [div#father, body, html] // Keep in mind that
// the “body® and "html® elements will also be included!

document.getElementsByTagName('html') [@].ancestors();
/1 -> 1

Example 5.13

ancestors | 37

classNames

classNames(element) -> [className...]

Returns a new instance of ClassNames, an Enumerable object used to read and write class names of the

element.

Practically, this means that you have access to your element's CSS classNames as an Enumerable rather
Y y y

than as the string that the native className property gives you (notice the singular form).

On top of that, this array is extended with a series of methods specifically targeted at dealing with CSS class-
Names: set (className), add(className) and remove (className). These are used internally by Ele-
ment.addClassName, Element.toggleClassName and Element.removeClassName, but—unless you

want to do some pretty wacky stuff—you usually won't need them.

<div id="mutsu" class="apple fruit food"></div>

$('mutsu').classNames()
// -> ['apple', 'fruit', 'food']

// change its class names:
$('mutsu').className = 'fruit round'

$('mutsu').classNames ()
// -> ['fruit', 'round']

Excample 5.14.

cleanWhitespace

cleanWhitespace(element) -> HTMLElement

Removes all of element's text nodes which contain on/y whitespace. Returns element.

cleanWhitespace () removes whitespace-only text nodes. This can be very useful when using standard
methods like nextSibling, previousSibling, firstChild or lastChild to walk the DOM.

If you only need to access element nodes (and not text nodes), try using Element's new up (), down (),
next () and previous () methods instead. you won't regret it!

Consider the following HTML snippet:

<ul id="apples">
<1i>Mutsu</1i>
McIntosh</1i>
Ida Red</1i>

38 | Chapter 5. Element

Let's grab what we think is the first list item:

var element = $('apples');
element.firstChild.innerHTML;
// -> undefined

Excample 5.15.

That doesn't seem to work to well. Why is that ? ul#apples's first child is actually a text node containing
only whitespace that sits between <ul id="apples">and <1i>Mutsu</1i>,

Let's remove all this useless whitespace:

element.cleanWhitespace();

Example 5.16.

That's what our DOM looks like now:

<UL id="apples">MutsuMcIntoshIda Red

And guess what, firstChild now works as expected!

element.firstChild.innerHTML;
// -> '"Mutsu'

Excample 5.17.

descendantOf

descendantOf (element, ancestor) -> Boolean

Checks if element is a descendant of ancestor.

As descendantOf () internally applies $ () to ancestor, it accepts indifferently an element or an element’s

id as its second argument.

<div id="australopithecus">
<div id="homo-herectus">
<div id="homo-sapiens"></div>
</div>
</div>

descendantOf | 39

$('homo-sapiens').descendantOf ('australopithecus');
// -> true

$('homo-herectus').descendantOf ('homo-sapiens');
// -> false

Example 5.18.

descendants

descendants(element) -> [HTMLElement...]

Collects all of element’s descendants and returns them as an array of extended elements.
Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<div id="australopithecus">
<div id="homo-herectus">
<div id="homo-neanderthalensis"></div>
<div id="homo-sapiens"></div>
</div>
</div>

$('australopithecus').descendants();
// -> [div#homo-herectus, div#homo-neanderthalensis, div#homo-sapiens]

$('homo-sapiens').descendants();
/1 -> 11

Esxcample 5.19.

down

down(element[, cssRule][, index = 0]) -> HTMLElement | undefined

Returns element’s first descendant (or the n-th descendant if index is specified) that matches cssRule. If
no cssRule is provided, all descendants are considered. If no descendant matches these criteria, un-
defined is returned.

The down () method is part of Prototype’s ultimate DOM traversal toolkit (check out up (), next () and
previous () for some more Prototypish niceness). It allows precise index-based and/or CSS rule-based se-

lection of any of the element’s descendants.
As it totally ignores text nodes (it only returns elements), you don’t have to worry about whitespace nodes.

And as an added bonus, all elements returned are already extended allowing chaining:

40 | Chapter 5. Element

$(element) .down(1l).next('li', 2).hide();

Excample 5.20.

Arguments

If no argument is passed, element’s first descendant is returned (this is similar as calling firstChild ex-
cept down () returns an already extended element.

If an index is passed, element’s corresponding descendant is returned. (This is equivalent to selecting an
element from the array of elements returned by the method descendants ().) Note that the first element
has an index of 0.

If cssRule is defined, down () will return the first descendant that matches it. This is a great way to grab the
first item in a list for example (just pass in ‘li’ as the method’s first argument).

If both cssRule and index are defined, down () will collect all the descendants matching the given CSS

rule and will return the one specified by the index.
In all of the above cases, if no descendant is found, undefined will be returned.

<ul id="fruits">
<li id="apples">

<1i id="golden-delicious">Golden Delicious</1i>
<11 id="mutsu" class="yummy">Mutsu</1i>
<1li id="mcintosh" class="yummy">McIntosh</1i>
<li id="ida-red">Ida Red</1li>

</1li>

$('fruits').down();
// equivalent:
$('fruits').down(0);
// -> li#apple

$('fruits').down(3);
// -> li#golden-delicious

$('apples').down('1li');
// -> li#golden-delicious

$('apples').down('1li.yummy');
// -> li#mutsu

$(' fruits').down('.yummy', 1);
// -> li#mcintosh

$('fruits').down(99);
// -> undefined

Excample 5.21.

empty | 41

empty
empty(element) -> Boolean

Tests whether element is empty (i.e. contains only whitespace).

<div id="wallet"> </div>
<div id="cart">full!</div>

$('wallet').empty(); // -> true
$('cart').empty(); // -> false

Example 5.22.

extend

extend(element)

Extends element with 4/ of the methods contained in Element.Methods and Element.Methods.Simulated.
If element is an input, textarea or select tag, it will also be extended with the methods from
Form.Element.Methods. If it is a form tag, it will also be extended with Form.Methods.

This is where the magic happens! By extending an element with Prototype’s custom methods, we can
achieve that syntactic sugar and ease of use we all crave for. For example, you can do the following with an

extended element:

element.update('hello world');

Example 5.23.

And since most methods of Element return the element they are applied to, you can chain methods like so:

element.update('hello world').addClassName('greeting');

Excample 5.24.

Note that all of the elements returned by Element methods are extended (yes even for methods like Ele-
ment.siblings which return arrays of elements) and Prototype’s flagship utility methods $ () and $$ ()
obviously also return extended elements. If you want to know more about how Prototype extends the
DOM, jump to this article”.

42 | Chapter 5. Element

http://prototypejs.org/learn/extensions

getDimensions

getDimensions(element) -> {height: Number, width: Number}

Finds the computed width and height of element and returns them as key/value pairs of an object.

This method returns correct values on elements whose display is set to none either in an inline style rule or
in an CSS stylesheet.

In order to avoid calling the method twice, you should consider caching the values returned in a variable as
shown below. If you only need element’s width or height, consider using getWidth () or getHeight ()

instead.
Note that all values are returned as numbers only although they are expressed in pixels.

<div id="rectangle" style="font-size: 10px; width: 20em; height: 10em"></div>

var dimensions = $('rectangle').getDimensions();
// -> {width: 200, height: 100}

dimensions.width;
// -> 200

dimensions.height;
// -> 100

Example 5.25.

getElementsByClassName

getElementsByClassName(element, className) -> [HTMLElement...]

Fetches all of element’s descendants which have a CSS class of className and returns them as an array of
extended elements.

The returned array reflects the document order (e.g. an index of 0 refers to the topmost descendant of ele-
ment with class className).

<ul id="fruits">
<li id="apples">apples

<1i id="golden-delicious">Golden Delicious</1i>
<li id="mutsu" class="yummy">Mutsu</17i>
<1li id="mcintosh" class="yummy">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

</1i>
<11 id="exotic" class="yummy">exotic fruits

? http://prototypejs.org/learn/extensions

getElementsByClassName | 43

<1i id="kiwi">kiwi</1i>
<1li id="granadilla">granadilla</1i>

</1i>

$('fruits').getElementsByClassName ('yummy') ;
// -> [li#mutsu, li#mcintosh, li#exotic]

$('exotic').getElementsByClassName ('yummy') ;
/1 -> 1

Example 5.26.

getElementsBySelector

getElementsBySelector (element, selector...) -> [HTMLElement...]

Takes an arbitrary number of CSS selectors (strings) and returns a document-order array of extended chil-
dren of element that match any of them.

This method is very similar to $$() and therefore suffers from the same caveats. However, since it operates
in a more restricted scope (element’s children) it is faster and therefore a much better alternative. The sup-

ported CSS syntax is identical, so please refer to the $$ () docs for details.

<ul id="fruits">
<li id="apples">
<h3 title="yummy!">Apples</h3>
<ul id="list-of-apples">
<li id="golden-delicious" title="yummy!" >Golden Delicious</1li>
<li id="mutsu" title="yummy!">Mutsu</1i>
<1i id="mcintosh">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

<p id="saying">An apple a day keeps the doctor away.</p>
</1i>

$('apples').getElementsBySelector('[title="yummy!"]"');
// -> [h3, li#golden-delicious, li#mutsul

$('apples').getElementsBySelector('p#saying', 'li[title="yummy!"]"');
// -> [h3, li#golden-delicious, li#mutsu, p#saying]

$('apples').getElementsBySelector('[title="disgusting!"]");
/1 o-> 11

Excample 5.27.

44 | Chapter 5. Element

getHeight

getHeight(element) -> Number

Finds and returns the computed height of element.

This method returns correct values on elements whose display is set to none either in an inline style rule or

in an CSS stylesheet.

For performance reasons, if you need to query both width and height of element, you should consider us-
ing getDimensions () instead.

Note that the value returned is a number only although it is expressed in pixels.

<div id="rectangle" style="font-size: 10px; width: 20em; height: 10em"></div>

$('rectangle').getHeight();
// -> 100

Example 5.28.

getStyle

getStyle(element, property) -> String | null

Returns the given CSS property value of element. property can be specified in either of its CSS or camel-

ized form.

This method looks up the CSS property of an element whether it was applied inline or in a stylesheet. It
works around browser inconsistencies regarding float, opacity, which returns a value between 0 (fully
transparent) and 1 (fully opaque), position properties (left, top, right and bottom) and when getting the
dimensions (Width or height) of hidden elements.

$(element).getStyle('font-size');
// equivalent:

$(element).getStyle('fontSize');
// -> '"12px’

Excample 5.29.

getStyle | 45

Note

Internet Explorer returns literal values while other browsers return computed values. Consider

the following HTML snippet:

<style>
#test {
font-size: 12px;
margin-left: lem;
}
</style>
<div id="test"></div>

$('test').getStyle('margin-left');
// -> '"lem' in Internet Explorer,
// -> '"12px' elsewhere.

Example 5.30.

Safari returns null for any non-inline property if the element is hidden (has display set to
'none’).

Not all CSS shorthand properties are supported. You may only use the CSS properties de-
scribed in the Document Object Model (DOM) Level 2 Style Speciﬁcation3.

getWidth

getWidth(element) -> Number
Finds and returns the computed width of element. This method returns correct values on elements whose
display is set to none either in an inline style rule or in an CSS stylesheet.

For performance reasons, if you need to query both width and height of element, you should consider us-
ing getDimensions () instead.

Note that the value returned is a number only although it is expressed in pixels.

<div id="rectangle" style="font-size: 10px; width: 20em; height: 10em"></div>

$('rectangle').getWidth(); // -> 200

Excample 5.31.

3 http:/ /www.w3.0rg/ TR/DOM-Level-2-Style/ css.html#CSS-ElementCSSInlineStyle

46 | Chapter 5. Element

http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-ElementCSSInlineStyle

hasClassName

hasClassName(element, className) -> Boolean

Checks whether element has the given CSS className.

<div id="mutsu" class="apple fruit food"></div>

$('mutsu').hasClassName('fruit');
// -> true

$('mutsu').hasClassName('vegetable');
// -> false

Example 5.32.

hide
hide(element) -> HTMLElement

Hides and returns element.

<div id="error-message"></div>

$('error-message').hide();
// -> HTMLElement (and hides div#error-message)

Excample 5.33.

Backwards compatibility change

In previous versions of Prototype, you could pass an arbitrary number of elements to Element. toggle,

Element.show, and Element.hide, for consistency, this is no longer possible in version 1.5!

You can however achieve a similar result by using Enumerables:

['content', 'navigation', 'footer'].each(Element.hide);
// -> ['content', 'navigation', 'footer']
// and hides #content, #navigation and #footer.

Example 5.34.

or even better:

hide | 47

$('content', 'navigation', 'footer').invoke('hide');
// -> [HTMLElement, HTMLElement, HTMLElement] (#content, #navigation and #footer)
// and hides #content, #navigation and #footer.

Example 5.35

immediateDescendants

immediateDescendants(element) -> [HTMLElement...]

Collects all of the element’s immediate descendants (i.e. children) and returns them as an array of extended ele-

ments.

The returned array reflects the children order in the document (e.g., an index of 0 refers to the topmost child
of element).

Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<div id="australopithecus">
<div id="homo-herectus">
<div id="homo-neanderthalensis"></div>
<div id="homo-sapiens"></div>
</div>
</div>

$('australopithecus').immediateDescendants();
// -> [div#homo-herectus]

$('homo-herectus').immediateDescendants();
// -> [div#homo-neanderthalensis, div#homo-sapiens]

$('homo-sapiens').immediateDescendants();
/1 -> []

Example 5.36.

Inspect
inspect(element) -> String

Returns the debug-oriented string representation of element. For more information on inspect methods,
see Object.inspect.

48 | Chapter 5. Element

<1li id="golden-delicious">Golden Delicious</1i>
<li id="mutsu" class="yummy apple">Mutsu</1i>
<li id="mcintosh" class="yummy">McIntosh</1i>
<li</1i>

$('golden-delicious').inspect();
// -> '<1li id="golden-delicious">"'

$('mutsu').inspect();
// -> '"<1i id="mutsu" class="yummy apple">'

$('mutsu').next().inspect();
/] -> '<1i>!

Example 5.37.

makeClipping

makeClipping(element) -> HTMLElement

Simulates the pootly supported CSS c11ip property by setting element's overflow value to 'hidden'. Re-
turns element.

To undo clipping, use undoClipping().

The visible area is determined by element's width and height.

<div id="framer">

</div>

$('framer') .makeClipping().setStyle({width: '100px', height: '100px'});
// -> HTMLElement

Example 5.38.

makePositioned

makePositioned(element) -> HTMLElement

. .. 4
Allows for the easy creation of CSS containing block " by setting an element's CSS position to 'relative’
if its initial position is either 'static' or undefined. Returns element.

4 http:/ /www.w3.org/TR/CSS21/visudet.html#containing-block-details

makeClipping | 49

http://www.w3.org/TR/CSS21/visudet.html#containing-block-details

To revert back to element's original CSS position, use undoPositionedy().
Consider the following case:

<p>lorem [..]1</p>
<div id="container">

<div id="element" style="position: absolute; top: 20px; left: 20px;"></div>
</div>

'®00 prototypejs.org |
Lj Ir sit amet, consectetur adipisicing elit, sed do
ei cididunt ut labore et dolore magna aliqua. Ut
eIl dividel hiam, quis nostrud exercitation ullamco laboris
nf divielement § oo mmodo consequat.

div#container

To position div#element relatively to it's parent element:

$('container') .makePositioned();
// -> HTMLElement

Example 5.39.

Which yields the expected layout:

re 00 prototypejs.org 1!

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.

div#element

div#container

50 | Chapter 5. Element

match

match(element, selector) -> Boolean

Checks if element matches the given CSS selector.

<ul id="fruits">
<li id="apples">

<1li id="golden-delicious">Golden Delicious</1i>
<1li id="mutsu" class="yummy">Mutsu</17i>
<1li id="mcintosh" class="yummy">McIntosh</1i>
<li id="ida-red">Ida Red</1li>

</1i>

$('fruits').match('ul'); // -> true
$('mcintosh') .match('li#mcintosh.yummy'); // -> true

$('fruits').match('p'); // -> false

Example 5.40

next

next(element[, cssRule][, index = 0]) -> HTMLElement | undefined

Returns element’s following sibling (or the indexth one, if index is specified) that matches cssRule. If no
cssRule is provided, all following siblings are considered. If no following sibling matches these criteria, un-
defined is returned.

The next () method is part of Prototype’s ultimate DOM traversal toolkit (check out up (), down () and
previous () for some more Prototypish niceness). It allows precise index-based and/or CSS rule-based se-
lection of any of element’s following siblings. (Note that two elements are considered siblings if they
have the same parent, so for example, the head and body elements are siblings—their parent is the html

element.)

As it totally ignores text nodes (it only returns elements), you don’t have to worry about whitespace-only

nodes. And as an added bonus, all elements returned are already extended allowing chaining:

$(element) . .down(l).next('1i', 2).hide();

Example 5.41.

match | 51

Arguments

If no argument is passed, element’s following sibling is returned (this is similar as calling nextSibling ex-

cept next () returns an already extended element).

If an index is passed, element’s corresponding following sibling is returned. (This is equivalent to selecting
an element from the array of elements returned by the method nextSiblings ()). Note that the sibling
right below element has an index of 0.

If cssRule is defined, next () will return the element first following sibling that matches it.

If both cssRule and index are defined, previous () will collect all of element’s following siblings
matching the given CSS rule and will return the one specified by the index.

In all of the above cases, if no following sibling is found, undefined will be returned.

<ul id="fruits">
<li id="apples">
<h3 id="title">Apples</h3>
<ul id="list-of-apples">
<li id="golden-delicious">Golden Delicious</1i>
<1i id="mutsu">Mutsu</1i>
<li id="mcintosh" class="yummy">McIntosh</1i>
<li id="ida-red" class="yummy">Ida Red</1i>

<p id="saying">An apple a day keeps the doctor away.</p>
</1i>

$('list-of-apples').next();
// equivalent:
$('list-of-apples').next(0);
// -> p#sayings

$('title').next(1);
// -> ul#list-of-apples

$('title').next('p');
// -> p#sayings

$('golden-delicious').next('.yummy"');
// -> li#mcintosh

$('golden-delicious') .next('.yummy', 1);
// -> li#ida-red

$('ida-red") . .next();
// -> undefined

Example 5.42.

52 | Chapter 5. Element

nextSiblings
nextSiblings(element) -> [HTMLElement...]

Collects all of element’s next siblings and returns them as an array of extended elements.

Two elements are siblings if they have the same parent. So for example, the head and body elements are
siblings (their parent is the htm1l element). Next siblings are simply the ones which follow element in the
document.

The returned array reflects the siblings order in the document (e.g. an index of 0 refers to the sibling right
below element).

Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<1li id="golden-delicious">Golden Delicious</1i>
<1li id="mutsu">Mutsu</1i>
<1li id="mcintosh">McIntosh</1i>
<1li id="ida-red">Ida Red</1li>

$('mutsu').nextSiblings();
// -> [li#mcintosh, li#ida-red]

$('ida-red').nextSiblings();
/1 ->]

Example 5.43.

observe

observe(element, eventName, handler[, useCapture = false]) -> HTMLElement

Registers an event handler on element and returns element.

This is a simple proxy for Event.observe. Please refer to it for further information.

$(element) .observe('click', function(event){
alert(Event.element (event).innerHTML) ;
5)s
// -> HTMLElement (and will display an alert dialog containing
// element's innerHTML when element 1is clicked).

Excample 5.44.

nextSiblings | 53

previous

previous(element[, cssRule][, index = 0]) -> HTMLElement | undefined

Returns element's previous sibling (or the ndex'th one, if index is specified) that matches cssRule. If no
cssRule is provided, all previous siblings are considered. If no previous sibling matches these criteria, un-

defined is returned.

The previous () method is patt of Prototype's ultimate DOM traversal toolkit (check out up (), down ()
and next () for some more Prototypish niceness). It allows precise index-based and/or CSS rule-based se-
lection of any of element's previous siblings. (Note that two elements are considered siblings if they have
the same parent, so for example, the head and body elements are siblings—their parent is the htm1 ele-

ment.)

As it totally ignores text nodes (it only returns elements), you don't have to worty about whitespace-only

nodes.

And as an added bonus, all elements returned are already extended allowing chaining:

$(element) .down(l) .next('li', 2).hide();

Example 5.45.

Arguments

If no argument is passed, element's previous sibling is returned (this is similar as calling previousSibling
except previous () returns an already extended element).

If an index is passed, element's corresponding previous sibling is returned. (This is equivalent to selecting
an element from the array of elements returned by the method previousSiblings()). Note that the sib-
ling right above e1lement has an index of 0.

If cssRule is defined, previous () will return the element first previous sibling that matches it.

If both cssRule and index are defined, previous () will collect all of element's previous siblings match-
ing the given CSS rule and will return the one specified by the index.

In all of the above cases, if no previous sibling is found, undefined will be returned.

<ul id="fruits">
<li id="apples">
<h3>Apples</h3>
<ul id="list-of-apples">
<li id="golden-delicious" class="yummy">Golden Delicious</1i>
<li id="mutsu" class="yummy">Mutsu</1i>
<1i id="mcintosh">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

<p id="saying">An apple a day keeps the doctor away.</p>
</1i>

54 | Chapter 5. Element

$('saying').previous();
// equivalent:
$('saying').previous(0);
// -> ul#list-of-apples

$('saying').previous(l);
// -> h3

$('saying').previous('h3");
// -> h3

$('ida-red').previous('.yummy"');
// -> li#mutsu

$('ida-red').previous('.yummy', 1);
// -> li#golden-delicious

$('ida-red') .previous(5);
// -> undefined

Example 5.46.

previousSiblings
previousSiblings(element) -> [HTMLElement...]

Collects all of element’s previous siblings and returns them as an array of extended elements.

Two elements are siblings if they have the same parent. So for example, the head and body elements are
siblings (their parent is the htm1 element). Previous siblings are simply the ones which precede element in

the document.

The returned array reflects the siblings nversed order in the document (e.g. an index of 0 refers to the lowest

sibling i.e., the one closest to element).
Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<li id="golden-delicious">Golden Delicious</1i>
<1li id="mutsu">Mutsu</1i>
<1li id="mcintosh">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

$('mcintosh').previousSiblings();
// -> [li#mutsu, li#golden-delicious]

$('golden-delicious').previousSiblings();
/1=>]

Example 5.47.

previousSiblings | 55

readAttribute

readAttribute(element, attribute) -> String | null

Returns the value of element's attribute or nullif attribute has not been specified.

This method serves two purposes. First it acts as a simple wrapper around getAttribute which isn'ta
"real" function in Safari and Internet Explorer (it doesn't have . apply or .call for instance). Secondly, it

cleans up the horrible mess Internet Explorer makes when handling attributes.

Prototype

$('tag').readAttribute('href');
// -> '/tags/prototype'

$('tag').readAttribute('title');
// -> 'view related bookmarks.'

$('tag').readAttribute('my_widget');
// -> 'some info.'

Example 5.48

recursivelyCollect

recursivelyCollect(element, property) -> [HTMLElement...]

Recursively collects elements whose relationship is specified by property. property has to be a property (a
method won’t do!) of element that points to a single DOM node. Returns an array of extended elements.

This method is used internally by ancestors (), descendants (), nextSiblings (), previousSib-
lings () and siblings () which offer really convenient way to grab elements, so directly accessing re-
cursivelyCollect () should seldom be needed. However, if you are after something out of the ordinary,
it is the way to go.

Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<ul id="fruits">
<li id="apples">
<ul id="list-of-apples">
<li id="golden-delicious"><p>Golden Delicious</p></1li>
<1i id="mutsu">Mutsu</1i>
<1li id="mcintosh">McIntosh</1i>
<li id="ida-red">Ida Red</1i>

</1i>

56 | Chapter 5. Element

$('fruits').recursivelyCollect('firstChild');
// -> [li#apples, ul#list-of-apples, li#golden-delicious, p]

Excample 5.49.

remove

remove(element) -> HTMLElement

Completely removes element from the document and returns it.
If you would rather just hide the element and keep it around for further use, try hide () instead.

// Before:

<1li id="golden-delicious">Golden Delicious</1i>
<1li id="mutsu">Mutsu</1i>
<1li id="mcintosh">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

$('mutsu').remove(); // -> HTMLElement (and removes li#mutsu)

Example 5.50.

// After:

<li id="golden-delicious">Golden Delicious</1i>
<1i id="mcintosh">McIntosh</1i>
<1i id="ida-red">Ida Red</1i>

removeClassName

removeClassName(element, className) -> HTMLElement

Removes element’s CSS className and returns element.

<div id="mutsu" class="apple fruit food"></div>

$('mutsu').removeClassName('food'); // -> HTMLElement
$('mutsu').classNames(); // -> ['apple', 'fruit']

Excample 5.51.

remove | 57

replace

replace(element[, html]) -> HTMLElement

Replaces element by the content of the htm1l argument and returns the removed element.
html can be either plain text, an HTML snippet or any JavaScript object which has a toString() method.

If it contains any <script> tags, these will be evaluated after element has been replaced (replace() in-
ternally calls String.evalScripts).

Note that if no argument is provided, replace () will simply clear element of its content. However, using
remove () to do so is both faster and more standard compliant.

<div id="food">
<div id="fruits">
<p id="first">Kiwi, banana and apple.</p>
</div>
</div>

Passing an HTML snippet:

$('first').replace('<ul id="favorite">kiwibananaapple</1i>"');
// -> HTMLElement (p#first)

$('fruits').innerHTML;

// -> '<ul id="favorite"><1li>kiwibananaapple</1i>"'

Example 5.52.

Again, with a <script> tag thrown in:

$('favorite').replace('<p id="still-first">Melon, oranges and grapes.</p><script>alert("removed!")</script>');
// -> HTMLElement (ul#favorite) and prints "removed!" in an alert dialog.
$('fruits').innerHTML

// -> '<p id="still-first">Melon, oranges and grapes.</p>'

Example 5.53.

With plain text:

$('still-first').replace('Melon, oranges and grapes.'); // -> HTMLElement (p#still-first)
$('fruits').innerHTML // -> 'Melon, oranges and grapes.'

Excample 5.54.

Finally, relying on the toString() method:

58 | Chapter 5. Element

$('fruits').update(123); // -> HTMLElement
$('food').innerHTML; // -> '123"

Excample 5.55.

scrollTo

scrollTo(element) -> HTMLElement

Scrolls the window so that element appears at the top of the viewport. Returns element.

This has a similar effect than what would be achieved using HTML anchors’ (except the browser’s history is

not modified).

$(element).scrollTo();
// -> HTMLElement

Example 5.56.

setStyle

setStyle(element, styles) -> HTMLElement

Modifies element’s CSS style properties. Styles are passed as a hash of property-value pairs in which the

properties are specified in their camelized form.

$(element).setStyle({
backgroundColor: '#900',
fontSize: '12px'

I

// -> HTMLElement

Example 5.57.

> http:/ /www.w3.org/ TR /html401/struct/links. html#h-12.2.3

scrollTo | 59

http://www.w3.org/TR/html401/struct/links.html#h-12.2.3

Note

The method transparently deals with browser inconsistencies for float—however, as float is
a reserved keyword, you must either escape it or use cssFloat instead—and opacity—which
accepts values between 0 (fully transparent) and 1 (fully opaque). You can safely use either of
the following across all browsers:

$(element).setStyle({
cssFloat: 'left',
opacity: 0.5

B) s

// -> HTMLElement

$(element).setStyle({
'float': 'left', // notice how float is surrounded by single quotes
opacity: 0.5

5)s

// -> HTMLElement

Excample 5.58.

Not all CSS shorthand properties are supported. You may only use the CSS properties de-
scribed in the Document Object Model (DOM) Level 2 Style Speciﬁcation6.

show

show(element) -> HTMLElement

Displays and returns element.

<div id="error-message" style="display:none;"></div>

$('error-message').show();
// -> HTMLElement (and displays div#error-message)

Example 5.59.

6 http:/ /www.w3.0rg/ TR/DOM-Level-2-Style/ css.html#CSS-ElementCSSInlineStyle

60 | Chapter 5. Element

http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-ElementCSSInlineStyle

Note

show () cannot display elements hidden via CSS stylesheets. Note that this is not a Prototype
limitation but a consequence of how the CSS display property works.
<style>
#hidden-by-css {
display: none;

}
</style>

[..]

<div id="hidden-by-css"></div>

$('hidden-by-css').show(); // DOES NOT WORK!
// -> HTMLElement (div#error-message is still hidden!)

Example 5.60.

Backwards compatibility change

In previous versions of Prototype, you could pass an arbitrary number of elements to Element. toggle,
Element.show, and Element.hide, for consistency, this is no longer possible in version 1.5!

You can however achieve a similar result by using Enumerables:

['content', 'navigation', 'footer'].each(Element.show);
// -> ['content', 'navigation', 'footer']
// and displays #content, #navigation and #footer.

Excample 5.61.

or even better:

$('content', 'navigation', 'footer').invoke('show');
// -> [HTMLElement, HTMLElement, HTMLElement] (#content, #navigation and #footer)
// and displays #content, #navigation and #footer.

Example 5.62.

show | 61

siblings
siblings(element) -> [HTMLElement...]

Collects all of element’s siblings and returns them as an array of extended elements.

Two elements are siblings if they have the same parent. So for example, the head and body elements are

siblings (their parent is the htm1 element).

The returned array reflects the siblings order in the document (e.g. an index of 0 refers to element’s top-
most sibling).

Note that all of Prototype’s DOM traversal methods ignore text nodes and return element nodes only.

<1i id="golden-delicious">Golden Delicious</1i>
<li id="mutsu">Mutsu</1li>
<1li id="mcintosh">McIntosh</1i>
<li id="ida-red">Ida Red</1li>

$('mutsu').siblings();
// -> [li#golden-delicious, li#mcintosh, li#ida-red]

Excample 5.63.

stopObserving

stopObserving(element, eventName, handler) -> HTMLElement

Unregisters handler and returns element.

This is a simple proxy for Event.stopObserving. Please refer to it for further information.

$(element) .stopObserving('click', coolAction);
// -> HTMLElement (and unregisters the 'coolAction' event handler).

Excample 5.64

62 | Chapter 5. Element

toggle

toggle(element) -> HTMLElement

Toggles the visibility of element.

<div id="welcome-message"></div>
<div id="error-message" style="display:none;"></div>

$('welcome-message').toggle();
// -> HTMLElement (and hides div#welcome-message)

$('error-message').toggle();
// -> HTMLElement (and displays div#error-message)

Example 5.65.

Note

toggle () cannot display elements hidden via CSS stylesheets. Note that this is not a Prototype
limitation but a consequence of how the CSS display property works.
<style>
#hidden-by-css {
display: none;

}
</style>

[..]

<div id="hidden-by-css"></div>

$('hidden-by-css').toggle(); // WONT' WORK!
// -> HTMLElement (div#hidden-by-css is still hidden!)

Example 5.66.

Backwards compatibility change

In previous versions of Prototype, you could pass an arbitrary number of elements to Element. toggle,

Element.show, and Element.hide, for consistency, this is no longer possible in version 1.5!

You can however achieve a similar result by using Enumerables:

toggle | 63

['error-message', 'welcome-message'].each(Element.toggle);
// -> ['error-message', 'welcome-message']
// and toggles the visibility of div#error-message and div#confirmation-message.

Example 5.67.

or even better:

$('error-message', 'welcome-message').invoke('toggle');
// -> [HTMLElement, HTMLElement] (div#error-message and div#welcome-message)
// and toggles the visibility of div#error-message and div#confirmation-message.

Example 5.68.

toggleClassName

toggleClassName(element, className) -> HTMLElement

Toggles element’s CSS className and returns element.

<div id="mutsu" class="apple"></div>

$('mutsu').hasClassName('fruit');
// -> false

$('mutsu').toggleClassName('fruit');
// -> element

$('mutsu').hasClassName('fruit');
// -> true

Example 5.69.

undoClipping

undoClipping(element) -> HTMLElement

Sets element’s CSS overflow property back to the value it had before makeClipping() was applied. Re-
turns element.
<div id="framer">

</div>

64 | Chapter 5. Element

$('framer').undoClipping();
// -> HTMLElement (and sets the CSS overflow property to its original value).

Excample 5.70.

undoPositioned

undoPositioned(element) -> HTMLElement

Sets element back to the state it was before makePositioned() was applied to it. Returns element.

element's absolutely positioned children will now have their positions set relatively to element's nearest
ancestor with a CSS position of 'absolute', 'relative’ or 'fixed'.

<p>lorem [..]</p>
<div id="container">

<div id="element" style="position: absolute; top: 20px; left: 20px;"></div>
</div>

$('container').makePositioned() ;
// -> HTMLElement

Example 5.71.

re 060 prototypejs.org 1|

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.

div#felement

div#container

To return to the orginal layout, use undoPositioned();

$('container') .undoPositioned() ;
// -> HTMLElement

Example 5.72.

undoPositioned | 65

.’e 00 prototypejs.org

Lj Ir sit amet, consectetur adipisicing elit, sed do
ei cididunt ut labore et dolore magna aliqua. Ut
el hiam, quis nostrud exercitation ullamco laboris
ni divifelement 2 commodo consequat.

div#container

up
up([cssRulel [, index = 0]) -> HTMLElement | undefined

Returns element’s first ancestor (or the zndexth ancestor, if index is specified) that matches cssRule. If
no cssRule is provided, all ancestors are considered. If no ancestor matches these criteria, undefined is

returned.

The up () method is part of Prototype’s ultimate DOM traversal toolkit (check out down (), next () and
previous () for some more Prototypish niceness). It allows precise index-based and/or CSS rule-based se-

lection of any of element’s ancestors.

As it totally ignores text nodes (it only returns elements), you don’t have to wortry about whitespace-onl
y1g y y y P y

nodes.

And as an added bonus, all elements returned are already extended allowing chaining:

$(element) .down(1l) .next('li', 2).hide();

Excample 5.73.

Walking the DOM has never been that easy!

Arguments

If no argument is passed, element’s first ancestor is returned (this is similar as calling parentNode except

up () returns an already extended element.

If an index is passed, element’ corresponding ancestor is is returned. (This is equivalent to selecting an ele-
ment from the array of elements returned by the method ancestors ()). Note that the first element has an
index of 0.

If cssRule is defined, up () will return the first ancestor that matches it.

66 | Chapter 5. Element

If both cssRule and index are defined, up () will collect all the ancestors matching the given CSS rule and
will return the one specified by the index.

In all of the above cases, if no descendant is found, undefined will be returned.

<html>
[..]
<body>
<ul id="fruits">
<1li id="apples" class="keeps-the-doctor-away">

<1i id="golden-delicious">Golden Delicious</1i>
<1li id="mutsu" class="yummy">Mutsu</17i>
<1li id="mcintosh" class="yummy">McIntosh</1i>
<li id="ida-red">Ida Red</1li>

</1i>

</body>
</html>

$(' fruits').up();
// equivalent:
$('fruits').up(0);
// -> body

$('mutsu').up(2);
// -> ul#fruits

$('mutsu').up('li');
// -> li#apples

$('mutsu').up('.keeps-the-doctor-away');
// -> li#apples

$('mutsu').up('ul', 1);
// -> li#fruits

$('mutsu').up('div');
// -> undefined

Example 5.74.

update

update(element[, newContent]) -> HTMLElement

Replaces the content of element with the provided newContent argument and returns element.

newContent can be plain text, an HTML snippet, or any JavaScript object which has a toString() meth-
od.

If it contains any <script> tags, these will be evaluated after element has been updated (update () intern-
ally calls String.evalScripts()).

update | 67

If no argument is provided, update () will simply clear element of its content.

Note that this method allows seamless content update of table related elements in Internet Explorer 6 and
beyond.

<div id="fruits">carrot, eggplant and cucumber</div>

Passing a regular string:

$('fruits').update('kiwi, banana and apple');
// -> HTMLElement

$('fruits').innerHTML

// -> 'kiwi, banana and apple'

Example 5.75.

Clearing the element’s content:

$('fruits').update();

// -> HTMLElement
$('fruits').innerHTML;

// -> "' (an empty string)

Example 5.76.

And now inserting an HTML snippet:

$('fruits').update('<p>Kiwi, banana and apple.</p>');
// -> HTMLElement

$('fruits').innerHTML;

// -> '<p>Kiwi, banana and apple.</p>'

Example 5.77.

... with a <script> tag thrown in:

$('fruits').update('<p>Kiwi, banana and apple.</p><script>alert("updated!")</script>');
// -> HTMLElement (and prints "updated!" in an alert dialog).

$('fruits').innerHTML;

// -> '<p>Kiwi, banana and apple.</p>'

Example 5.78.

Relying on the toString() method:

68 | Chapter 5. Element

$('fruits').update(123);
// -> HTMLElement
$('fruits').innerHTML;
/7 -> '123"

Excample 5.79.

Finally, you can do some pretty funky stuff by defining your own toString() method on your custom ob-

jects:

var Fruit = Class.create();
Fruit.prototype = {
initialize: function(fruit){
this.fruit = fruit;

Bo
toString: function(){

return 'I am a fruit and my name is "' + this.fruit + "".';
}

}

var apple = new Fruit('apple');
$('fruits').update(apple);

$('fruits').innerHTML;
// -> "I am a fruit and my name is "apple".'

Example 5.80.

visible
visible(element) -> Boolean

Returns a Boolean indicating whether or not element is visible (i.e. whether its inline style property is set
to "display: none;").

<div id="visible"></div>
<div id="hidden" style="display: none;"></div>

$('visible').visible();
// -> true

$('hidden').visible();
// -> false

Example 5.81.

visible | 69

Note

Styles applied via a CSS stylesheet are #o# taken into consideration. Note that this is not a Proto-
type limitation, it is a CSS limitation.
<style>
#hidden-by-css {
display: none;

}
</style>

[..]

<div id="hidden-by-css"></div>

$('hidden-by-css').visible();
// -> true

Example 5.82.

70 | Chapter 5. Element

Chapter

Enumerable

Enumerable provides a large set of useful methods for enumerations, that is, objects that act as collections of

values. It is a cornerstone of Prototype.

Enumerable is what we like to call a module: a consistent set of methods intended not for independent use,

but for mixin: incorporation into other objects that “fit” with it. This meaning of the term “module” is bor-
rowed from the Ruby world, which is fitting enough, since Enumerable attempts to mimic at least part of

its Ruby-world namesake.

Quite a few objects, in Prototype, mix Enumerable in already. The most visible cases are Array and Hash,
but you’ll find it in less obvious spots as well, such as in ObjectRange and various DOM- or AJAX-related

objects.

Aliases: it’s all about having it your way

Just like its Ruby counterpart, Enumerable cares about your comfort enough to provide more than one
name for a few behaviors. This is intended to reduce your learning curve when your technical background
made you familiar with one name or another. However, the documentation attempts to clearly state when

one name is “preferred” over the other (perhaps due to readability, widely accepted intuitiveness, etc.).

Here are the aliases you’ll find in Enumerable:

* map is the same as collect.

* findis the preferred way of using detect.
e findAl1l is the same as select.

* include is the same as member.

* entries is the same as toArray.

Using it efficiently

When using Enumerable, beginners often create sub-par code, performance-wise, by simple lack of famili-
arity with the API. There are several use cases when one method will be significantly faster (and often make

for more readable code!) than another. Here are the two main points about this.

collect, invoke, pluck and each: thinking about the use case

Beginners tend to use each whenever they need to manipulate all elements in the enumeration, and col-
lect whenever they need to yield a value the same way for each element. This is the proper way for the gen-
eric case, but there are specific use cases where it can be written way more concisely, more elegantly, and

with much better performance.

* When you need to invoke the same method on all the elements, go with invoke.

* When you need to fetch the same property on all the elements, go with pluck.

reject and findAll vs. partition

The findAll/select methods retrieve all the elements that match a given predicate. Conversely, the re-
ject method retrieves all the elements that do 70f match a predicate. In the specific case where you need bo#h

sets, you can avoid looping twice: just use partition.

Mixing Enumerable in your own objects

So, let’s say you’ve created your very own collection-like object (say, some sort of Set, or perhaps something
that dynamically fetches data ranges from the server side, lazy-loading style). You want to be able to mix

Enumerable in (and we commend you for it). How do you go about this?

The Enumerable module basically makes only one requirement on your object: it must provide a method
named _each (note the leading underscore), that will accept a function as its unique argument, and will con-

tain the actual “raw iteration” algorithm, invoking its argument with each element in turn.

As detailed in the documentation for each, Enumerable provides all the extra layers (handling iteration
short-circuits, passing numerical indices, etc.). You just need to implement the actual basic iteration, as fits

your internal structure.

If this leaves you goggling, just have a look at Prototype’s Array, Hash or ObjectRange objects’ soutrce
code. They all begin with their own _each method, which should help you grasp the idea.

Once you’re done with this, you just need to mix Enumerable in, which youll usually do before defining your
methods, so as to make sure whatever overrides you provide for Enumerable methods will indeed prevail.
In short, your code will probably end up looking like this:

72 | Chapter 6. Enumerable

var YourObject = Class.create();
Object.extend(YourObject.prototype, Enumerable);
Object.extend(YourObject.prototype, {
initialize: function() { // with whatever constructor arguments you need
// Your construction code
Bo

_each: function(iterator) {
// Your iteration code, invoking iterator at every turn

b

// Your other methods here, including Enumerable overrides
I

Example 6.1.

Then, obviously, your object can be used like this:

var obj = new YourObject();
// Whatever use here, e.g. to fill it up
obj.pluck('somePropName') ;
obj.invoke ('someMethodName') ;
obj.size();
// etc.

Excample 6.2.

all

all([iterator = Prototype.K]) -> Boolean

Determines whether all the elements are boolean-equivalent to true, ecither directly or through computation
by the provided iterator.

The code obviously short-circuits as soon as it finds an element that “fails” (that is boolean-equivalent to
false). If no iterator is provided, the elements are used directly. Otherwise, each element is passed to the

iterator, and the result value is used for boolean equivalence.

[1.al1()
// -> true (empty arrays have no elements that could be false-equivalent)

$R(1, 5).all()
// -> true (all values in [1..5] are true-equivalent)

[0, 1, 2]1.al1l()
// -> false (with only one loop cycle: 0 is false-equivalent)

[9, 10, 15].all(function(n) { return n >= 10; })

all173

// -> false (the iterator will return false on 9)

$H({ name: 'John', age: 29, oops: false }).all(function(pair) { return pair.value; })
// -> false (the oops/false pair yields a value of false)

Excample 6.3.

m See also

If you need to determine whether at least one element matches a criterion, you would be better
off using any.

any
any([iterator = Prototype.K]) -> Boolean
Determines whether at least one element is boolean-equivalent to true, either directly or through computa-

tion by the provided iterator.

The code obviously short-circuits as soon as it finds an element that “passes” (that is boolean-equivalent to
true). If no iterator is provided, the elements are used directly. Otherwise, each element is passed to the

iterator, and the result value is used for boolean equivalence.

[1.any ()
// -> false (empty arrays have no elements that could be true-equivalent)

$R(O, 2).any()
// -> true (on the second loop cycle, 1 is true-equivalent)

[2, 4, 6, 8, 10].any(function(n) { return @ == n % 3; })
// -> true (the iterator will return true on 6: the array does have 1+ multiple of 3)

$H({ optl: null, opt2: false, opt3: '', optd: 'pfew!' }).any(function(pair) { return pair.value; })
// -> true (thanks to the opt4/'pfew!' pair, whose value is true-equivalent)

Example 6.4.

m See also

If you need to determine whether all elements match a criterion, you would be better off using
all.

74 | Chapter 6. Enumerable

collect

collect(iterator) -> Array

Returns the results of applying the iterator to each element. Aliased as map.

This is a sort of Swiss-Army knife for sequences. You can turn the original values into virtually anything!

Here are a few examples:

['Hitch', "Hiker's", 'Guide', 'To', 'The', 'Galaxy'].collect(function(s) {
return s.charAt(0).toUpperCase();

}).join('")

// -> "HHGTTG'

$R(1,5).collect(function(n) {
return n * n;

9
// -> [1, 4, 9, 16, 25]

Excample 6.5.

Optimized versions

There are two very common use-cases that will be much better taken care of by specialized variants.

First, the method-calling scenario: you want to invoke the same method on all elements, possibly with argu-

ments, and use the result values. This can be achieved easily with invoke.

Second, the property-fetching scenario: you want to fetch the same property on all elements, and use those.
This is a breeze with pluck.

Both variants perform much better than collect, since they avoid lexical closure costs.

detect

detect(iterator) -> firstElement | undefined

Finds the first element for which the iterator returns true. Aliased by the find method, which is con-

sidered the more readable way of using it.

each

each(iterator) -> Enumerable

The cornerstone of Enumerable. It lets you iterate over all the elements in a generic fashion, then returns

the Enumerable, thereby allowing chain-calling.

detect | 75

Iterations based on each are the core of Enumerable. The iterator function you pass will be called with two

parameters:

1. The current element in the iteration.

2. The numerical index, starting at zero, of the current cycle. This second parameter is unused (and

therefore undeclared) most of the time, but can come in handy sometimes.

$break and $continue

Regular loops can be short-circuited in JavaScript using the break and continue statements. However,
when using iterator functions, your code is outside of the loop scope: the looping code happens behind the

scene.

In order to provide you with equivalent (albeit less optimal) functionality, Prototype provides two global ex-
ception objects, $break and $continue. Throwing these is equivalent to using the corresponding native
statement in a vanilla loop. These exceptions are properly caught internally by the each method.

['one', '"two', 'three'].each(function(s) {
alert(s);

1)

["hello', 'world'].each(function(s, index) {
alert(index + ': ' + s);

s
// alerts -> '0O: hello' then 'l: world'

// This could be done better with an accumulator using inject, but humor me
// here...
var result = [];
$R(1,10) .each(function(n) {
if (0 ==n % 2)
throw $continue;
if (n > 6)
throw $break;
result.push(n);
5)s
// result -> [1, 3, 5]

Example 6.6.

each VS. _each

If you read the main Enumerable page, you may recall that in order for a class to mix in Enumerable, it
has to provide the fundamental looping code appropriate to its internal structure. This basic iteration meth-
od must be called _each, and it only receives one argument: the iterator function. You’ll find further details

on the main page.

76 | Chapter 6. Enumerable

Basically, Enumerable.each wraps the actual looping code provided by _each with:

1. Supportt for break/continue, as desctibed above.

2. Proper maintenance and passing of the value/index atguments.

Optimized version

There is a very common use-case that will probably be better taken care of by a specialized variant: the
method-calling scenario. Say you want to invoke the same method on all elements, possibly with arguments.

You may or may not want to use the result values. This can be achieved easily with invoke.

This variant usually performs better than each, since it avoids lexical closure costs. However, it does accu-
mulate the result values in an array, which you might not need. At any rate, you might want to benchmark

both options in your specific use case.

entries

entries() -> Array

Alias for the more generic toArray method.

find
find(iterator) -> firstElement | undefined

Finds the first element for which the iterator returns true. Convenience alias for detect, but constitutes
the preferred (more readable) syntax. This is the short-circuit version of the full-search findAl1. It just re-

turns the first element that matches your predicate, or undefined if no element matches.

// An optimal exact prime detection method, slightly compacted.
function isPrime(n) {

if (2 > n) return false;

if (0 == n % 2) return (2 == n);

for (var index = 3; n / index > index; index += 2)

if (0 == n % index) return false;

return true;

Y // isPrime

$R(10,15) . find(isPrime)
/7 -> 11

['hello', 'world', 'this', 'is', 'nice']l.find(function(s) {
return s.length <= 3;

)
/] -> "is!

Example 6.7.

entries | 77

findAll

findAll(iterator) -> Array

Returns all the elements for which the iterator returned true. Aliased as select.

This is a sort of all-purpose version of grep (which is specific to String representations of the values). fin-

dA11 lets you define your predicate for the elements, providing maximum flexibility.

$R(1, 10).findAll1(function(n) { return @ == n % 2; })
// ->[2, 4, 6, 8, 10]

["hello', 'world', 'this', 'is', 'nice'].findAll(function(s) {
return s.length >=5;

9
// -> ['hello', 'world']

Excample 6.8.

m See also

The reject method is the opposite of this one. If you need to split elements in two groups
based upon a predicate, look at partition.

grep
grep(regex[, iterator = Prototype.K]) -> Array
Returns all the elements whose string representations match the regular expression. If an iterator is

provided, it is used to produce the string representation for each selected element.

This is a variant of findA1l1, which is specific to pattern-matching String representations of the elements.
It is mostly useful on sequences of Strings, obviously, but also on any objects with a toString method

that fits such a usage.

// Get all strings with a repeated letter somewhere
['hello', 'world', 'this', 'is', 'cool'l.grep(/(.)\1/)
// -> ['hello', 'cool']

$('myTable').descendants().grep(/t[dh]l/, function(node) {
return node.tagName.tolLowerCase();

i)
// -> only td/th elements inside the table

78 | Chapter 6. Enumerable

// Get all numbers ending with @ or 5
$R(1,30).grep(/[051%/)
// ->[5, 10, 15, 20, 25, 30]

Example 6.9.

include

include(object) -> Boolean

Determines whether a given object is in the Enumerable or not, based on the == comparison operator.

Aliased as member.

Note this is not strict equality (===, comparing both value and type), but equivalence (just value, with impli-

cit conversions).

If you need to check whether there is an element matching a given predicate, use any instead.

$R(1,15).include(10)
// -> true

['hello', 'world'].include('HELLO")
// -> false

[1, 2, '3', '4', '5'].include(3)
// -> true (== ignores actual type)

Example 6.10.

Inject
inject(accumulator, iterator) -> accumulatedValue

Incrementally builds a result value based on the successive results of the iterator. This can be used for array

construction, numerical sums/averages, etc.

$R(1,10).inject (0@, function(acc, n) { return acc + n; })
// -> 55 (sum of 1 to 10)

$R(2,5).inject (1, function(acc, n) { return acc * n; })
// -> 120 (factorial 5)

['hello', 'world', 'this', 'is', 'nice'l.inject([], function(array, value, index) {
if (0 == index % 2)
array.push(value);

include | 79

return array;

)
// -> ['hello', 'this', 'nice']

// Note how we can use references (see next section):

var arrayl [1;

var array2 = [1, 2, 3].inject(arrayl, function(array, value) {
array.push(value * value);
return array;

B)s

array?2

// -> [1, 4, 9]

arrayl

/7 -> [1, 4, 9]

array2.push(16);

arrayl

// -> [1, 4, 9, 16]

Example 6.11

Performance considerations

When injecting on arrays, you can leverage JavaScript’s reference-based scheme to avoid creating ever-larger

cloned arrays (as opposed to JavaScript’s native concat method, which returns a new array, guaranteed).

invoke

invoke (methodName[, arg...]) -> Array
Optimization for a common use-case of each or collect: invoking the same method, with the same po-
tential arguments, for all the elements. Returns the results of the method calls.

Since it avoids the cost of a lexical closure over an anonymous function (like you would do with each or
collect), this performs much better.

Perhaps more importantly, it definitely makes for more concise and more readable source code.

['hello', 'world', 'cool!']l.invoke('toUpperCase')
// ['HELLO', 'WORLD', 'COOL!"']

['hello', 'world', 'cool!'].invoke('substring', 0, 3)
// ['hel', 'wor', 'coo']

// Of course, this works on Prototype extensions (why shouldn't it?!)
$('navBar', 'adsBar', 'footer').invoke('hide')

Example 6.12.

80 | Chapter 6. Enumerable

See also

The pluck method does much the same thing for property fetching.

map

map(iterator) -> Array

Returns the results of applying the iterator to each element. Convenience alias for collect.

max

max([iterator = Prototype.K]) -> maxValue

Returns the maximum element (or element-based computation), or undefined if the enumeration is empty.

Elements are either compared directly, or by first applying the iterator and comparing returned values.

Note: for equivalent elements, the latest one is returned.

$R(1,10) .max ()
// -> 10

['hello', 'world', 'gizmo'].max()
// -> "world'

function Person(name, age) {
this.name = name;
this.age = age;

}

var john = new Person('John', 20);
var mark = new Person('Mark', 35);
var daisy = new Person('Daisy', 22);

[john, mark, daisy].max(function(person) {
return person.age;

9]
// -> 35

Example 6.13.

map | 81

member

member (object) -> Boolean

Determines whether a given object is in the Enumerable or not, based on the == comparison operator.

Convenience alias for include.

min

min([iterator = Prototype.K]) -> minValue

Returns the minimum element (or element-based computation), or undefined if the enumeration is empty.

Elements are either compared directly, or by first applying the iterator and comparing returned values.

Note: for equivalent elements, the earliest one is returned.

$R(1,10) .min()
/1 -> 1

['hello', 'world', 'gizmo'].min()
// -> 'gizmo'

function Person(name, age) {
this.name = name;
this.age = age;

}

var john = new Person('John', 20);
var mark = new Person('Mark', 35);
var daisy = new Person('Daisy', 22);

[john, mark, daisy]l.min(function(person) {
return person.age;

)
// -> 20

Excample 6.14.

partition

partition([iterator = Prototype.K]) -> [TrueArray, FalseArray]

Partitions the elements in two groups: those regarded as true, and those considered false. By default, reg-
ular JavaScript boolean equivalence is used, but an iterator can be provided, that computes a boolean repres-
entation of the elements. This is a preferred solution to using both findAl1l/select and reject: it only

loops through the elements once!

82 | Chapter 6. Enumerable

['hello', null, 42, false, true, , 17].partition()
// -> [['hello', 42, true, 17], [null, false, undefined]]

$R(1, 10).partition(function(n) {
return @ == n % 2;

9]
// -> [[2, 4, 6, 8, 101, [1, 3, 5, 7, 9]]

Example 6.15.

pluck

pluck(propertyName) -> Array
Optimization for a common use-case of collect: fetching the same property for all the elements. Returns
the property values.

Since it avoids the cost of a lexical closure over an anonymous function (like you would do with collect),
this performs much better.

Perhaps more importantly, it definitely makes for more concise and more readable source code.

['hello', 'world', 'this', 'is', 'nice']l.pluck('length')
// -> [5, 5, 4, 3, 4]

document.getElementsByClassName ('superfluous') .pluck('tagName').sort().uniq()

// -> sorted list of unique canonical tag names for elements with this
// specific CSS class...

Example 6.16.

See also

The invoke method does much the same thing for method invoking.

reject

reject(iterator) -> Array

Returns all the elements for which the iterator returned false.

pluck | 83

$R(1, 10).reject(function(n) { return 0 == n % 2; })
// ->[1, 3, 5, 7, 9]

['hello', 'world', 'this', 'is', 'nice'l.reject(function(s) {
return s.length >= 5;

)

// -> ['this', 'is', 'nice'l

Excample 6.17.

See also

The findA11l method (and its select alias) are the opposites of this one. If you need to split
elements in two groups based upon a predicate, look at partition.

select

select(iterator) -> Array

Alias for the findA11 method.

size

size() -> Number

Returns the size of the enumeration.

$R(1, 10).size()
// -> 10

['hello', 42, true].size()
// -> 3

$H() .size()
// -> 0

Excample 6.18.

Performance considerations

This method exists solely to provide a generic size-getting behavior for all objects enumerable. The default

implementation actually performs the loop, which means it has exact linear complexity. Most objects that

84 | Chapter 6. Enumerable

mix in Enumerable will try to optimize this by redefining their own version of size; this is, for instance,
the case of Array, which redefines size to delegate to arrays’ native length property.

sortBy

sortBy(iterator) -> Array

Provides a custom-sorted view of the elements based on the criteria computed, for each element, by the iter-

ator.

Elements of equivalent criterion value are left in existing order. Computed criteria must have well-defined

strict weak ordering semantics (i.e. the < operator must exist between any two critetia).

Note that arrays already featute a native sort method, which relies on natural ordering of the array's elements
(i.e. the semantics of the < operator when applied to two such elements). You should use sortBy only whe

natural ordering is inexistent or otherwise unsatisfactory.

['hello', 'world', 'this', 'is', 'nice'l.sortBy(function(s) { return s.length; })
// -> "is', 'this', 'nice', 'hello', 'world']
['hello', 'world', 'this', 'is', 'cool'].sortBy(function(s) {

var md = s.match(/[aeiouy]l/g);
return null == md ? 0 : md.length;

)

// -> ['world', 'this', 'is', 'hello', 'cool'] (sorted by vowel count)

Example 6.19

toArray

toArray() -> Array

Returns an Array representation of the enumeration. Aliased as entries.

Note: this makes any object that mixes in Enumerable amenable to the $A utility function.

$R(1, 5).toArray()
// ->[1, 2, 3, 4, 5]

Example 6.20.

Performance considerations

Obviously, objects that mix in Enumerable may override the default code, as Array does.

sortBy | 85

zip
zip(Sequence...[, iterator = Prototype.K]) -> Array

Zips together (think of the zip on a pair of trousers) 2+ sequences, providing an array of tuples. Each tuple
contains one value per original sequence. Tuples can be converted to something else by applying the option-
al iterator on them.

For those who never encountered a z1ip function before (i.e. have not worked enough with languages such
as Haskell or Ruby ;-)), the exact behavior of this method might be difficult to grasp. Here are a few ex-
amples that should clear it up.

var firstNames = ['Justin', 'Mislav', 'Tobie', 'Christophe'];
var lastNames = ['Palmer', 'Marohni#', 'Langel', 'Porteneuve'];

firstNames.zip(lastNames)
// -> [['"Justin', 'Palmer'], ['Mislav', 'Marohni#'], ['Tobie', 'Langel'l],
// ['Christophe', 'Porteneuve']]

firstNames.zip(lastNames, function(a) { return a.join(' "); })

// -> ['Justin Palmer', 'Mislav Marohni#', 'Tobie Langel', 'Christophe Porteneuve']
var cities = ['Memphis', 'Zagreb', 'Montreal', 'Paris'];
firstNames.zip(lastNames, cities, function(p) {
return p[0] + ' ' + p[l] + ', ' + p[2];
)
// -> ['Justin Palmer, Memphis', 'Mislav Marohni#, Zagreb', 'Tobie Langel, Montreal',
// 'Christophe Porteneuve, Paris']
firstNames.zip($R(1, 100), function(a) { return a.reverse().join('. '); })

// -> ['1. Justin', '2. Mislav', '3. Tobie', '4. Christophe']

Example 6.21.

86 | Chapter 6. Enumerable

Chapter

Event

What a wonderful mess (it would be)

Event management is one of the really sore spots of cross-browser scripting.

True, the prominent issue is: everybody does it the W3C way, and MSIE does it another way altogether. But
there are quite a few subtler, sneakier issues here and there waiting to bite your ankle, such as the keypress/
keydown issue with KHTML-based browsers (Konqueror and Safari). Also, MSIE has a tendency to
memory leaks when it comes to discarding event handlers.

Prototype to the rescue!

Of course, Prototype smooths it over so well you'll forget these troubles even exist. Enter the Event
namespace. It is replete with methods (listed at the top and bottom of this page), that all take the current

event object as an argument, and happily produce the information you’re requesting, across all major
browsers.

Event also provides a standardized list of key codes you can use with keyboard-related events. All those are
accessible using the Event . KEY_xxx syntax, with the following constants defined: KEY_BACKSPACE,
KEY_TAB, KEY_RETURN, KEY_ESC, KEY_LEFT, KEY_UP, KEY_RIGHT, KEY_DOWN, KEY_DELETE, KEY_HOME,
KEY_END, KEY_PAGEUP, KEY_PAGEDOWN. The names are self-explanatory.

The functions you’re most likely to use a lot ate observe, element and stop. As for the others, your
mileage may vary: it’s all about what your web page does.

element

Event.element (event) -> Element

Returns the DOM element on which the event occurred.

. . . . 1 .
Note that if the browser does not support native DOM extensions (see this page for further details), the ele-
ment you’ll get may very well not be extended. If you intend to use methods from Element.Methods on
it, wrap the call in the $ () function.

Here’s a simple code that lets you click everywhere on the page and, if you click directly on paragraphs,
hides them.

Event.observe(document.body, 'click', function(event) {
var elt = Event.element(event);
if ('P' == elt.tagName)
$(elt).hide();
s

Example 7.1.

See also

There is a subtle distinction between this function and findElement.

findElement

Event.findElement(event, tagName) -> Element

Returns the first DOM element with a given tag name, upwards from the one on which the event occurred.

Sometimes, you’re not interested in the actual element that got hit by the event. Sometimes you’re interested
in its “closest element,” (either the original one, or its container, or its container’s container, etc.), defined by
its tag (e.g., <p>). This is what findElement is for.

The provided tag name will be compared in a case-insensitive manner.

If no matching element is found, the document itself ({-TMLDocument node) is returned.

! http:/ /http:/ /www.prototypejs.org/learn/extensions

88 | Chapter 7. Event

http://http://www.prototypejs.org/learn/extensions

Here’s a simple code that lets you click everywhere on the page and hides the closest-fitting paragraph
around your click (if any).

Event.observe(document.body, 'click', function(event) {
var elt = Event.findElement(event, 'P');
if (elt !'= document)
$(elt).hide();
B)s

Example 7.2.

For more complex searches, you’ll need to get the actual element and use up on it, which lets you express
your request with CSS syntax, and also search farther than the first match (plus, the result is extension-

guaranteed):

Event.observe(document.body, 'click', function(event) {
// First element from event source with 'container' among its CSS classes
var elt = $(Event.element(event)).up('.container');
// Or: second DIV from the event source
// elt = $(Event.element(event)).up('div', 1);
// Or: second DIV with 'holder' among its CSS classes...
// elt = $(Event.element(event)).up('div.holder', 1);
elt.hide();
B)s

Example 7.3.

See also

If you’re looking for the element directly hit by the event, just use the element function.

isLeftClick

Event.isLeftClick(event) -> Boolean

Determines whether a button-related mouse event was about the “left” (primary, actually) button.

Note: this is not an absolute left, but “left for default” (right-handed). On systems configured for left-
handed users, where the primary button is the right one (from an absolute perspective), this function exam-

ines the proper button.

isLeftClick | 89

observe

Event.observe(element, eventName, handler[, useCapture = false])

Registers an event handler on a DOM element.

1)

An important note

First, if you're coming from a background where you'd use HIML event attributes (e.g. <body
onload="return myFunction()">) or DOM Level-0 event properties (e.g. Wwin-
dow.onload = myFunction;), you must shed those vile ways :-) and understand what ob-
serve does.

It does not replace existing handlers for that same element+event pair. It adds to the /ist of handlers
for that pair. Using observe will never incapacitate eatlier calls.

What are those arguments about?

1.

A\

The DOM element you want to observe; as always in Prototype, this can be either an actual DOM
reference, or the ID string for the element.

The standardized event name, as per the DOM level supported by your browser (usually DOM

2
Level 2 Events, see section 1.6 for event names and details). This can be as simple as 'click'.

The handler function. This can be an anonymous function you create on-the-fly, a vanilla function,
a bound event listenet, it's up to you.

Optionally, you can request capturing instead of bubbling. The details are in the DOM spec referred
to above. Note that capturing is not supported on several major browsers, and is seldom what you

need, anyway. Most often, you won't even provide this argument.

The requirement people too often forget...

To register a function as an event handler, the DOM element that you want to observe must
already exist in the DOM (in other words, it must have appeared in the source, or been dy-

namically created and inserted, before your handler-registration script line runs).

2 http://www.w3.0rg/ TR/DOM-Level-2-Events/events.html

90 | Chapter 7. Event

http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html

A simple example
Let us assume the following (X)HTML fragment:
<form id="signinForm" method="post" action="/auth/signin">

</form>

Here's how to register your function checkForm on form submission:

Event.observe('signinForm', 'submit', checkForm);

Example 7.4.

Of course, you'd want this line of code to run once the form exists in the DOM; but putting inline scripts in

the document is pretty obstrusive, so instead we'll go for a simple approach that waits till the page is fully

loaded:

Event.observe(window, 'load', function() {
Event.observe('signinForm', 'submit', checkForm);

5D 8

Example 7.5.

Just a little wrapping. ..

Note that if your page is heavy, you might want to run this code before the page is fully loaded: just wait un-
til the DOM is loaded, that will be enough. There is currently no standard event for this, but here is a helpful
article’ you can use.

The tricky case of methods that need this

Passing your event handler as a function argument, you lose its binding. That is, you lose its ability to know
what this means to the original function. If you're passing in a method that does need to use the this ref-

erence (for instance, to access fields of its container object), you're in trouble.
Or not.

This is an issue specifically addressed by Prototype's bindAsEventListener function. Check it out if you
don't know it already. Usage is simple:

? http://tanny.ica.com/ica/tko/tkoblognsf/dx/domcontentloaded-event-for-browsers

observe | 91

http://tanny.ica.com/ica/tko/tkoblog.nsf/dx/domcontentloaded-event-for-browsers
http://tanny.ica.com/ica/tko/tkoblog.nsf/dx/domcontentloaded-event-for-browsers

var Checks = {
// some stuff our 'generic' function needs

generic: function(event) {
// Some generic, all-purpose checking (e.g. empty required fields)
}
b8

Event.observe('signinForm', 'submit', Checks.generic.bindAsEventListener (Checks));

Excample 7.6.

m See also

The stopObserving and unloadCache methods are closely related, and worth a look.

pointerX

Event.pointerX(event) -> Number

Returns the absolute horizontal position for a mouse event.

Note: the position is absolute on the page, not on the viewport. scrolling right increases the returned value for

events on the same viewport location.

pointerY

Event.pointerY(event) -> Number

Returns the absolute vertical position for a mouse event.

Note: the position is absolute on the page, not on the vienport: scrolling down increases the returned value for
events on the same viewport location.

92 | Chapter 7. Event

stop

Event.stop(event)

Stops the event’s propagation and prevents its default action from being triggered eventually.

There are two aspects to how your browser handles an event once it fires up:

* The browser usually triggers event handlers on the actual element the event occurred on, then on its
parent element, and so on and so forth, until the document’s root element is reached. This is called
event bubbling, and is the most common form of event propagation. You may very well want to stop
this propagation when you just handled an event, and don’t want it to keep bubbling up (or see no
need for it).

* Once your code got a chance to process the event, the browser handles it as well, if that event has a
default behavior. For instance, clicking on links navigates to them; submitting forms sends them over
to the server side; hitting the Return key in a single-line form field submits it; etc. You may very well

want to prevent this default behavior if you do your own handling,

Because stopping one of those aspects means, in 99.9% of the cases, preventing the other one as well, Pro-
totype bundles both in this stop function. Calling it on an event object stop propagation and prevents the
default behavior.

Here’s a simple code that prevents a form from being sent to the server side if a certain field is empty.

Event.observe('signinForm', 'submit', function(event) {
var login = $F('login').strip();
if ("' == login) {

Event.stop(event);
// Display the issue one way or another
}
P

Example 7.7.

stopObserving

Event.stopObserving(element, eventName, handler[, useCapture = false])

Unregisters an event handler.

This function is called with exactly the same argument semantics as observe. It unregisters an event hand-
ler, so the handler is not called anymore for this element+event pair.

stop 1 93

Why won't it stop observing!?

For stopObserving to work, you must pass exactly the same argnments as those you did to the corresponding
observe call. Complying with this seems straightforward enough, but there is a common pattern where

code is not what it seems to be:

var obj = {

fx: function(event) { ..}

b

Event.observe(elt, 'click', obj.fx.bindAsEventListener (obj));

// THIS IS WRONG, DON'T DO IT!
Event.stopObserving(elt, 'click', obj.fx.bindAsEventListener(obj)); // Won't work!

Excample 7.8.

Here, although it may seem fine at first glance, you must remember that bindAsEventListener returns a
fresh anonymous function that wraps your method. This means that every call to it returns a new function.
Therefore, the code above requests stopping on another function than was used when setting up observa-

tion. No match is found, and the original observer is left untroubled.

. . . Sy . . 4 .
To avoid this, you need to "cache" the bound functions (which is, for instance, what script.aculo.us = does in

many of its classes), like this:

var obj = {
fx: function(event) { .. }
b5
obj.bfx = obj.fx.bindAsEventListener (obj);

Event.observe(elt, 'click', obj.bfx);

Event.stopObserving(elt, 'click', obj.bfx);

Excample 7.9.

m See also

The unloadCache function is related and worth a look.

¢ http://scriptaculo.us

94 | Chapter 7. Event

http://script.aculo.us

unloadCache

Event.unloadCache()

Unregisters all event handlers registered through observe. Automatically wired for you.

The sad tale of MSIE, event handlers and memory leaks

There is a significant issue with MSIE, which is that under a variety of conditions, it just will not release
event handlers when the page unloads. These handlers will stay in RAM, filling it up slowly, clogging the

browser’s arteries. This is known as a memory leak.

Of course, manually keeping tabs on all the handlers you register (which you do through observe, being

such a nice person) is pretty tedious. And boring. It would be, in short, the essence of un-cool.

Which is why Prototype takes care of it for you. It keeps tabs, and when unloadCache is called, it unre-
gisters everything and frees references, which is akin to sending a big pink lavender-perfumed invitation to
the garbage collector.

You don’t even need to know this

What’s even better is, Prototype automatically hooks unloadCache to page unloading, exclusively for
MSIE. So you don’t have anything to do. It’s all taken care of. We just though you’d like to know. Go do
something productive, some value-added JavaScript code for instance. We’re not here to hinder you with

automatable details.

unloadCache | 95

Chapter

Form

Form is a namespace and a module for all things form-related, packed with form manipulation and serializa-
tion goodness. While it holds methods dealing with forms as whole, its submodule Form.Element deals

with specific form controls.

Most of these methods are also available directly on FORM elements that have been extended (see “How
Prototype extends the DOM”l).

disable

disable(formElement) -> HTMLFormElement

Disables the form as whole. Form conttrols will be visible but uneditable.

Disabling the form is done by iterating over form elements and disabling them.

Note

Keep in mind that disabled elements are skipped by serialize methods! You cannot serialize a dis-
abled form.

! http:/ /http:/ /www.prototypejs.org/learn/extensions

http://http://www.prototypejs.org/learn/extensions
http://http://www.prototypejs.org/learn/extensions

enable

enable(formElement) -> HTMLFormElement

Enables a fully or partially disabled form.
Enabling the form is done by iterating over form elements and enabling them.

See the interactive example in the disable() method, which is basically it.

Note

This will enable all form controls regardless of how they were disabled (by sctipting or by
HTML attributes).

findFirstElement

findFirstElement (formElement) -> HTMLElement

Finds first non-hidden, non-disabled form control.

The returned object is either an INPUT, SELECT or TEXTAREA element. This method is used by the
focusFirstElement () method.

Note

The result of this method is the element that comes first in the document order, not the tabindex

2
order .

focusFirstElement

focusFirstElement (formElement) -> HTMLFormElement

Gives keyboard focus to the first element of the form.

Uses Form. findFirstElement () to get the first element and calls activate() on it. This is useful for
enhancing usability on your site by bringing focus on page load to forms such as search forms or contact

forms where a user is ready to start typing right away.

2 http://www.w3.0rg/ TR/html4/interact/forms.html#h-17.11.1

98 | Chapter 8. Form

http://www.w3.org/TR/html4/interact/forms.html#h-17.11.1
http://www.w3.org/TR/html4/interact/forms.html#h-17.11.1

getElements

getElements(formElement) -> array

Returns a collection of all form controls within a form.

Note

OPTION elements are not included in the result; only their parent SELECT control is.

getinputs

getInputs(formElement [, type [, namel]) -> array

Returns a collection of all INPUT elements in a form. Use optional type and name arguments to restrict the
search on these attributes.

var form = $('myform")

form.getInputs() // -> all INPUT elements
form.getInputs('text') // -> only text inputs

var buttons = form.getInputs('radio', 'education')
// -> only radio buttons of name "education"

// now disable these radio buttons:
buttons.invoke('disable")

Example 8.1.

Note

: : 3
Input elements are returned in the document order, not the tabindex order”.

? http://www.w3.org/ TR /html4/interact/forms.html#h-17.11.1

getinputs | 99

http://www.w3.org/TR/html4/interact/forms.html#h-17.11.1

reset

reset(formElement) -> HTMLFormElement

Resets a form to its default values. Example usage:

Form.reset('contact')

// equivalent:
$('contact').reset()

// both have the same effect as pressing the reset button

Esxcample 8.2.

This method allows you to programatically reset a form. It is a wrapper for the reset () method native to
HTMLFormElement.

serialize

serialize(formElement) -> string

Serialize form data to a string suitable for Ajax requests. The result is a string in form
"name=johnny&color=blue", suitable for parameters in an Ajax request. This method mimics the way

browsers serialize forms natively so that form data can be sent without refreshing the page.

The following code is all there is to it:

$('person-example').serialize()
// -> 'username=sulien&age=22&hobbies=coding&hobbies=hiking'

Excample 8.3.

Note

Disabled form elements are not serialized (as per W3C HTML recommendation). Also, file in-
puts are skipped as they cannot be serialized and sent using only JavaScript.

Keep in mind that "hobbies" multiple select should really be named "hobbies[]" if we'te posting
to a PHP or Ruby on Rails backend because we want to send an array of values instead of a
single one. This has nothing to do with JavaSctipt - Prototype doesn't do any magic with the

names of your controls, leaving these decisions entirely up to you.

100 | Chapter 8. Form

serializeElements

serializeElements(elements) -> string

Serialize an array of form elements.

The preferred method to serialize a form is Form.serialize. However, with serializeElements you
can serialize specific input elements of your choice, allowing you to specify a subset of form elements that you

want to serialize data from.

To serialize all input elements of type "text":

Form.serializeElements($('myform').getInputs('text'))
// -> serialized data

Example 8.4.

serializeElements | 101

Chapter

Form.Element

This is a collection of methods that assist in dealing with form controls. They provide ways to focus, serial-

ize, disable/enable or extract current value from a specific control.

In Prototype, Form.Element is also aliased Field and all these methods are available directly on INPUT,
SELECT and TEXTAREA elements that have been extended (see “How Prototype extends the DOM”1).
Therefore, these are equivalent:

Form.Element.activate('myfield')
Field.activate('myfield')
$('myfield').activate()

Example 9.1.

Naturally, you should always prefer the shortest form suitable in a situation. Most of these methods also re-
turn the element itself (as indicated by the return type) for chainability.

activate

activate(element) -> HTMLElement

Gives focus to a form control and selects its contents if it is a text input.

This method is just a shortcut for focusing and selecting; therefore, these are equivalent:

! http:/ /http:/ /www.prototypejs.org/learn/extensions

http://http://www.prototypejs.org/learn/extensions

Form.Element.focus('myelement').select()
$('myelement').focus().select()
$('myelement').activate()

Example 9.2.

clear

clear(element) -> HTMLElement

Clears the contents of a text input.

This code sets up a text field in a way that it clears its contents the first time it receives focus:

$('some_field').onfocus = function() {
// if already cleared, do nothing
if (this._cleared) return

// when this code is executed, "this" keyword will in fact be the field itself

this.clear ()
this._cleared = true

Example 9.3.

disable

disable(element) -> HTMLElement

Disables a form control, effectively preventing its value to be changed until it is enabled again.

This method sets the native disabled property of an element to true. You can use this property to check
the state of a control. See the interactive example in the Form.disable() method, which is basically it.

m Note

Disabled form controls are never serialized.

Never disable a form control as a security measure without having validation for it server-side.
A user with minimal experience of JavaScript can enable these fields on your site easily using
any browser. Instead, use disabling as a usability enhancement - with it you can indicate that a

specific value should not be changed at the time being;

104 | Chapter 9. Form.Element

enable
enable(element) -> HTMLElement

Enables a previously disabled form control.

See the interactive example in the Form.disable() method, which is basically it.

focus
focus(element) -> HTMLElement

Gives keyboard focus to an element.

Form.Element.focus('searchbox')
// equivalent:
$('searchbox"').focus ()

Example 9.4.

getValue

getValue(element) -> string | array

Returns the current value of a form control. A string is returned for most controls; only multiple select

boxes return an array of values. The global shortcut for this method is $F ().

present

present(element) -> boolean

Returns true if a text input has contents, false otherwise.

$('example').onsubmit = function(){
var valid, msg = $('msg')

// are both fields present?
valid = $(this.username).present() && $(this.email).present()

if (valid) {
// in real world we would return true here to allow the form to be submitted
// return true
msg.update('Passed validation!').style.color = 'green'

} else {

focus | 105

msg.update('Please fill out all the fields.').style.color = 'red'
}

return false

Excample 9.5.

select

select(element) -> HTMLElement

Selects the current text in a text input.

Some search boxes are set up that they auto-select their content when they receive focus.

$('searchbox').onfocus = function() {
Form.Element.select(this)
// however, much shorter is to just call:
this.select()

Excample 9.6.

serialize

serialize(element) -> string

Creates an URL-encoded string representation of a form control in the name=value format.

The result of this method is a string suitable for Ajax requests. However, it serializes only a single element -

if you need to serialize the whole form use Form.serialize() instead.

m Note

Serializing a disabled control or a one without a name will always result in an empty string.

If you simply need an element's value for reasons other than Ajax requests, use getValue() in-
stead.

106 | Chapter 9. Form.Element

Chapter

10

Function

Prototype takes issue with only one aspect of functions, really: binding.

What is binding?

“Binding” basically determines the meaning, when a function runs, of the this keyword. While there usually
is a proper default binding (th1is refers to whichever object the method is called on), this can be “lost”

sometimes, for instance when passing a function reference as an argument.

Say what? Here’s an example:

var obj = {
name: 'A nice demo',

fx: function() {
alert(this.name);

}
b5
function runFx(f) {
fO;
}
window.name = 'I am such a beautiful window!"';
obj.fx(); // This works fine, displaying "A nice demo."

runFx (obj.fx); // This goes awry, displaying "I am such a beautiful window!"

Example 10.1.

The reason why the second invocation boinks is: passing obj . fx as a regular function reference loses its

binding to obj. It reverts to runFx’s default binding, which is the window object.

Prototype to the rescue!

Prototype solves this. You’ll find two new methods on any function: one that guarantees binding (it can
even guarantee early parameters!), and one that is specific to functions intended as event handlers. See the

list below.

bind
bind(thisObj[, arg...]1) -> Function

Provides a guaranteed-binding equivalent of the original function, possibly with pre-filled arguments.
As discussed on the general Function page, binding can be a pretty tricky thing sometimes.

Prototype can guarantee that your function will execute with the object you want under the this reference,
just by invoking bind on it (you are welcome to cache the returned function and use it as many times as you

need). This is basic usage, just guaranteeing the reference:

var obj = {

name: 'A nice demo',

fx: function() { alert(this.name); }
b5

window.name = 'I am such a beautiful window!';
function runfFx(f) { f(); }
var fx2 = obj.fx.bind(obj);

runfFx (obj.fx);
runFx (fx2) ;

Example 10.2.

Now, what few people realize is, bind can also be used to prepend arguments to the final argument list:

var obj = {
name: 'A nice demo',
fx: function() {
alert(this.name + '\n' + $A(arguments).join(', '));
}
e

var fx2 = obj.fx.bind(obj, 1, 2, 3);
fx2(4, 5); // Alerts the proper name, then "1, 2, 3, 4, 5"

Excample 10.3.

108 | Chapter 10. Function

bindAsEventListener

bindAsEventListener (thisObj[, arg...]) -> Function

An event-specific variant of bind, which makes sure the function will get the current event object as first ar-

gument.

If you’re unclear on what “binding” is, check out Function’s API page. If you don’t quite understand what
bind does, check out its specific article.

When you’re creating methods that you want to use as event handlers, you need to get the current event
somehow. The W3C-conformant way is for the browser to pass it as first argument to your function. This is
well and good, but browsers such as MSIE fail to do it, for instance. You have to start jumping through
hoops.

To spare you this, Prototype lets you bind a function as an event listener. This is still a form of binding, so
you need to specify first what object is to be guaranteed as the this reference when the function executes.
But here, Prototype guarantees that its first argument will be the current event. Any arguments you specify
in the remainder of your call to bindAsEventListener will appear next in the arguments list.

You typically use this method in conjunction with Event.observe, and anywhere you need to pass a meth-

od as an event listener.

Here is a consolidated example:

var obj = {
name: 'A nice demo',
fx: function(e) {
var tag = Event.element(e).tagName.toLowerCase();
var data = $A(arguments);
data.shift();
alert(this.name + '\nClick on a

+ tag + '\nOther args: ' + data.join(', '));
}
b

Event.observe(document.body, 'click', obj.fx.bindAsEventListener(obj, 1, 2, 3));

// -> Any click on the page displays obj.name, the lower-cased tag name
// of the clicked element, and "1, 2, 3".

Excample 10.4.

bindAsEventListener | 109

Chapter

11

Hash

Hash can be thought of as an associative array, binding unique keys to values (which are not necessarily
unique), though it can not guarantee consistent order its elements when iterating, Because of the nature of
JavaScript programming language, every object is in fact a hash; but Hash adds a number of methods that let
you enumerate keys and values, iterate over key/value pairs, merge two hashes together, encode the hash in-

to a query string representation, etc.

Creating a hash

There ate two ways to construct a Hash instance: the first is regular JavaScript object instantiation with the
new keyword, and the second is using the $H function. Passing a plain JavaScript object to any of them
would clone it, keeping your original object intact, but passing a Hash instance to $H will return the same in-
stance unchanged.

You can call both constructor methods without arguments, too; they will assume an empty hash.

var h = $H({ name: 'Prototype', version: 1.5 });
// equivalent: var h = new Hash({ ... });

h.keys().sort().join(', ') // -> 'name, version'
h.merge({ version: '1.5 final', author: 'Sam Stephenson' });
h.each(function(pair) {
alert(pair.key + ' = "' + pair.value + '"');
)
// Alerts, in non-guaranteed order:
// 'name = "Prototype"', 'version = "1.5 final"', 'author = "Sam Stephenson"'

$H({ action: 'ship', order_id: 123, fees: ['feel', 'fee2'] }).toQueryString()
// -> action=ship&order_id=123&fees=feel&fees=fee2

Example 11.1.

m Note

Hash can not hold any key because of having Enumerable mixed in, as well as its own methods.
After adding a key that has the same name as any of those methods, this method will no longer
be callable. You can get away with doing that to methods you will not need, but imagine the fol-

lowing:
var h = new Hash({ ... });
h['each'] = 'my own stuff';
h.map () ;

// -> errors out because 'each' is not a function

Excample 11.2.

The most important method in Enumerable is ‘each’, and—since almost every other method
uses it—overwriting it renders our hash instance practically useless. You won’t get away with

using ‘_each’, too, since it also is an internal Enumerable method.

each

each(iterator) -> Hash

Iterates over the name/value paits in the hash.

This is actually the each method from the mixed-in Enumerable module. It is documented here to illus-
trate the structure of the passed first argument, and the order of iteration.

Pairs are passed as the first argument of the iterator, in the form of objects with two properties:

1. key, which is the key name as a String

2. value, which is the corresponding value (and can, possibly, be undefined)

The order of iteration is browser-dependent, as it relies on the native for...in loop. It is possible to have
function values in a hash, though the iteration skips over Hash and Enumerable methods (naturally). More
precisely, it skips the properties found on the object’s prototype.

var h = $H({ version: 1.5, author: 'Sam Stephenson' });
h.each(function(pair) {
alert(pair.key + ' = "' + pair.value + '"');
53
// Alerts, in non-guaranteed order, ''version = "1.5"' and 'author = "Sam Stephenson"'.

Example 11.3.

112 | Chapter 11. Hash

inspect
inspect() -> String

Returns the debug-oriented string representation of the hash.

For more information on inspect methods, see Object. inspect.

$H({ name: 'Prototype', version: 1.5 }).inspect()
// -> "<#Hash:{name: 'Prototype', version: 1.5}>" // Order not guaranteed

Excample 11.4.

keys
keys() -> [String...]

Provides an Array of keys (that is, property names) for the hash.

Note: the order of key names is browser-dependent (based on the for...in loop). Also, this currently skips

any property whose value is a function (such as hash methods).

$H({ name: 'Prototype', version: 1.5 }).keys().sort()
// -> ['name', 'version']

$H() .keys ()
/1 -> 1]

Example 11.5.

merge
merge (hash) -> alteredHash

Injects all the pairs in the given hash into the current one, which is then returned.

Duplicate keys will cause an overwrite (the argument hash prevails), and new keys from the argument hash
are also used. This is useful for selectively overwriting values on specific keys (e.g. exerting some level of

control over a series of options).

Note the argument needs not be a Hash object, as it it will get passed to the $H function anyway, to ensure
compatibility.

keys | 113

var h = $H({ name: 'Prototype', version: 1.5 });
h.merge({ version: '1.5 final', author: 'Sam' });

h.invoke('join', ' = ").sort().join(', ")
// -> "author = Sam, name = Prototype, version = 1.5 final"

Example 11.6.

remove

remove (key) -> value
remove (keyl, key2...) -> Array

Removes keys from a hash and returns their values.

var h = new Hash({ a:'apple', b:'banana', c:'coconut' })

h.remove('a', 'c') // -> ['apple', 'coconut']
h.values () // -> ['banana']

Example 11.7.

toQueryString
toQueryString() -> String

Turns a hash into its URL-encoded query string representation. This is a form of serialization, and is mostly
useful to provide complex parameter sets for stuff such as objects in the Ajax namespace (e.g
Ajax.Request).

Undefined-value pairs will be serialized as if empty-valued. Array-valued pairs will get serialized with one
name/value pair per array element. All values get URI-encoded using JavaScript's native encodeURICom-
ponent function.

The order of pairs in the serialized form is not guaranteed (and mostly irrelevant anyway), except for array-

based parts, which are serialized in array order.

$H({ action: 'ship', order_id: 123, fees: ['fl', 'f2'], 'label': 'a demo' }).toQueryString()
// -> 'action=ship&order_id=123&fees=fl&fees=f2&label=a%20demo"’

$H() .toQueryString() // -> ''

Excample 11.8.

114 | Chapter 11. Hash

Note

This method can be called in two ways: as an instance method (as in the above examples) or as

a class method on Hash.

Hash.toQueryString({ foo:'bar' })
// -> 'foo=bar

Excample 11.9.

This way you can generate a query string from an object without converting it to a Hash in-
stance, making it possible to serialize hashes that have keys corresponding to Enumerable

method names.

values

values() -> Array

Collect the values of a hash and returns them in an array.

The order of values is browser implementation-dependent (based on the for...in loop on keys),
so—although most of the time you will see it as consistent—it’s better not to rely on a specific order. Also

remember that the hash may contain values such as null or even undefined.

$H({ name: 'Prototype', version: 1.5 }).values().sort()
// -> [1.5, '"Prototype'l]

$H() .values()
/] ->]

Excample 11.10.

values | 115

Chapter

12

Insertion

Insertion provides a cross-browser solution to the dynamic insertion of HTML snippets (or plain text,
obviously). Comes in four flavors: After, Before, Bottom and Top, which behave just as expected.

After

new Insertion.After(element, html)
Inserts the html into the page as the next sibling of element.

Original HTML

<div>
<p id="animal_vegetable_mineral">In short, in all things vegetable, animal, and mineral...</p>
</div>

new Insertion.After (

'animal_vegetable_mineral',

"<p>I am the very model of a modern major general.</p>"
DE

Example 12.1.

Resulting HTML

<div>
<p id="animal_vegetable_mineral">In short, in all things vegetable, animal, and mineral...</p>
<p>I am the very model of a modern major general.</p>

</div>

Before

new Insertion.Before(element, html)
Inserts the htm1 into the page as the previous sibling of element.

Original HTML

<div>
<p id="modern_major_general">I am the very model of a modern major general.</p>
</div>

new Insertion.Before(

'modern_major_general',

"<p>In short, in all things vegetable, animal, and mineral...</p>"
E

Excample 12.2.

Resulting HTML

<div>

<p>In short, in all things vegetable, animal, and mineral...</p>

<p id="modern_major_general">I am the very model of a modern major general.</p>
</div>

Bottom

new Insertion.Bottom(element, html)
Inserts the html into the page as the last child of element.

Original HTML

<div id="modern_major_general">
<p>In short, in all things vegetable, animal, and mineral...</p>
</div>

new Insertion.Bottom(

'modern_major_general',

"<p>I am the very model of a modern major general.</p>"
)

Excample 12.3.

118 | Chapter 12. Insertion

Resulting HTML

<div id="modern_major_general">
<p>In short, in all things vegetable, animal, and mineral
<p>I am the very model of a modern major general.</p>
</div>

... </p>

Top
new Insertion.Top(element, html)

Inserts the html into the page as the first child of element.

Original HTML

<div id="modern_major_general">
<p>I am the very model of a modern major general.</p>
</div>

new Insertion.Top(

'modern_major_general',

"<p>In short, in all things vegetable, animal, and mineral.
IE

Excample 12.4.

L.</p>"

Resulting HTML

<div id="modern_major_general">
<p>In short, in all things vegetable, animal, and mineral
<p>I am the very model of a modern major general.</p>
</div>

...</p>

Top 1119

Chapter

13

Number

Prototype extends native JavaScript numbers in order to provide:

* ObjectRange compatibility, through a succ method.
* Ruby-like numerical loops with a times method.

* Simple utility methods such as toColorPart.

What becomes possible

$R(1, 10).each(function(index) {
// This gets invoked with index from 1 to 10, inclusive

b)) s

(5).times(function(n) {
// This gets invoked with index from © to 5, *exclusive*
// The parentheses are due to JS syntax, if we did not use a literal, they'd be superfluous

s

128.toColorPart()
// -> '70'

10.toColorPart()
// -> '0a'

"#' + [128, 10, 16].invoke('toColorPart').join('")
// -> '#800al0'

Excample 13.1.

succ

succ() -> Number

Returns the successor of the current Number, as defined by current + 1. Used to make numbers compatible

with ObjectRange.

(5).succ() // -> 6
$A($R(1, 5)).join('") // -> '12345'

Excample 13.2.

times

times(iterator) -> Number

Encapsulates a regular [0..n] loop, Ruby-style.

The callback function is invoked with a single argument, ranging from 0 to the number, exclusive.

var s = '";

(5).times(function(n) {
s +=n;

s

s // -> '01234'

Example 13.3.

toColorPart

toColorPart() -> String

Produces a 2-digit hexadecimal representation of the number (which is therefore assumed to be in the
[0..255] range). Useful for composing CSS color strings.

128.toColorPart() // -> '70'
10.toColorPart() // -> 'Oa'
"#' + [128, 10, 16].invoke('toColorPart').join('') // -> '#800al0'

Example 13.4

122 | Chapter 13. Number

Chapter

14

Object

Object is used by Prototype as a namespace; that is, it just keeps a few new methods together, which are in-
tended for namespaced access (i.c. starting with “Object.”).

For the regular developer (who simply uses Prototype without tweaking it), the most commonly used meth-
ods are probably inspect and, to a lesser degree, clone.

Advanced users, who wish to create their own objects like Prototype does, or explore objects as if they were
hashes, will turn to extend, keys and values.

clone

Object.clone(obj) -> Object

Clones the passed object using shallow copy (copies all the original’s properties to the result).

Do note that this is shallow copy, not deep copy.

var o = { name: 'Prototype', version: 1.5, authors: ['sam', 'contributors'] };
var 02 = Object.clone(o);

o2.version = '1.5 weird';
02.authors.pop();

o.version
// -> 1.5

02.version
// -> '1.5 weird'

o.authors
// -> ['sam'] // Ouch! Shallow copy!

Example 14.1.

extend

Object.extend(dest, src) -> alteredDest

Copies all properties from the source to the destination object. Used by Prototype to simulate inheritance
(rather statically) by copying to prototypes.

Documentation should soon become available that describes how Prototype implements OOP, where you
will find further details on how Prototype uses Object.extend and Class.create (something that may

well change in version 2.0). It will be linked from here.

Do not mistake this method with its quasi-namesake Element . extend, which implements Prototype’s

(much more complex) DOM extension mechanism.

Inspect
Object.inspect(obj) -> String
Returns the debug-oriented string representation of the object.

* undefined and null are represented as such.

* Other types are looked up for a inspect method: if there is one, it is used, otherwise, it reverts to
the toString method.

Prototype provides inspect methods for many types, both built-in and library-defined, such asin String,
Array, Enumerable and Hash, which attempt to provide most-useful string representations (from a de-
velopet’s standpoint) for their respective types.

Object.inspect()
// -> 'undefined'

Object.inspect(null)
// -> 'null'

Object.inspect(false)
// -> 'false'

Object.inspect([1, 2, 3])
// -> '[1, 2, 31'

Object.inspect('hello')
// -> "'hello'"

Example 14.2.

124 | Chapter 14. Object

keys
Object.keys(obj) -> [String...]

Treats any object as a Hash and fetches the list of its property names.

Note that the order of the resulting Array is browser-dependent (it relies on the for… in loop), and
is therefore not guaranteed to follow either declaration or lexicographical order. Sort the array if you wish to
guarantee order.

Object.keys ()
/1 ->]

Object.keys({ name: 'Prototype', version: 1.5 }).sort()
// -> ['name', 'version']

Excample 14.3.

values

Object.values(obj) -> Array

Treats any object as a Hash and fetches the list of its property values.

Note that the order of the resulting Array is browser-dependent (it relies on the for… in loop), and
is therefore not guaranteed to follow either declaration or lexicographical order. Also, remember that while

property names are unique, property values have no constraint whatsoever.

Object.values()
/11->]

Object.values({ name: 'Prototype', version: 1.5 }).sort()
// -> [1.5, '"Prototype'l]

Example 14.4.

keys | 125

Chapter

15

ObjectRange

Ranges represent an interval of values. The value type just needs to be “compatible,” that is, to implement a

succ method letting us step from one value to the next (its successor).

Prototype provides such a method for Number and String, but you are of course welcome to implement

useful semantics in your own objects, in order to enable ranges based on them.

ObjectRange mixes in Enumerable, which makes ranges very versatile. It takes care, however, to override
the default code for include, to achieve better efficiency.

While ObjectRange does provide a constructor, the preferred way to obtain a range is to use the $R utility

function, which is strictly equivalent (only way more concise to use).

The most common use of ranges is, undoubtedly, numerical:

$A(SR(1, 5)).join(", ')
//-> "1, 2,3, 4, 5"

$R(1, 5).zip(['one', 'two', 'three', 'four', 'five'l, function(tuple) ({
return tuple.join(' = ");
)

// ->['1 =one', '2 = two', '3 = three', '4 = four', '5 = five']

Excample 15.1.

Be careful with String ranges: as described in its succ method, it does not use alphabetical boundaries,
but goes all the way through the character table:

$A($R('a', |e|))
// ->['a', 'b', 'c', 'd', 'e']l, no surprise there

$A(SR('ax', 'ba'))
// -> Ouch! Humongous array, starting as ['ax', 'ay', 'az', 'a{', 'a|', 'a}', 'a~'...]

Example 15.2.

include

include(value) -> Boolean

Determines whether the value is included in the range.

This assumes the values in the range have a valid strict weak ordering (have valid semantics for the &1t ; op-
erator). While ObjectRange mixes in Enumerable, this method overrides the default version of include,

and is way more efficient (it uses a maximum of two comparisons).

$R(1, 10).1include(5)
// -> true

$R('a', 'h').include('x")
// -> false

$R(1, 10).1include(10)
// -> true

$R(1, 10, true).include(10)
// -> false

Example 15.3.

128 | Chapter 15. ObjectRange

Chapter

16

PeriodicalExecuter

This is a simple facility for periodical execution of a function. This essentially encapsulates the native
clearInterval/setInterval mechanism found in native Window objects.

The only notable advantage provided by PeriodicalExecuter is that it shields you against multiple paral-
lel executions of the callback function, should it take longer than the given interval to execute (it maintains
an internal “running” flag, which is shielded against exceptions in the callback function). This is especially
useful if you use one to interact with the user at given intervals (e.g use a prompt or confirm call): this will

avoid multiple message boxes all waiting to be actioned.

Of course, one might very well argue that using an actual object, not needing to maintain a global interval

handle, etc. constitute notable advantages as well.

Creating a PeriodicalExecuter

The constructor takes two arguments: the callback function, and the interval (in seconds) between execu-
tions. Once launched, a PeriodicalExecuter triggers indefinitely, until the page unloads (which browsers

usually take as an opportunity to clear all intervals and timers) or the executer is manually stopped.

// Campfire style :-)
new PeriodicalExecuter(pollChatRoom, 3);

new PeriodicalExecuter (function(pe) {
if (!confirm('Want me to annoy you again later?'))
pe.stop();
}, 5);
// Note that there won't be a stack of such messages if the user takes too long
// answering to the question...

Excample 16.1.

stop

stop()

Stops the periodical executer (there will be no further triggers).

Once a PeriodicalExecuter is created, it constitues an infinite loop, triggering at the given interval until
the page unloads. This method lets you stop it any time you want.

While there currently is a registerCallback method that technically re-enables the executer, it is unclear
whether it is considered internal (and therefore should not be used as a feature) or not. In doubt, always in-

stantiate a fresh PeriodicalExecuter when you need to start one.

var gCallCount = 0;
new PeriodicalExecuter (function(pe) {
if (++gCallCount > 3)
pe.stop();
else
alert(gCallCount);
bo B)35
// Will only alert 1, 2 and 3, then the PE stops.

Example 16.2.

130 | Chapter 16. PeriodicalExecuter

Chapter

17

Position

The Position object provides a series of methods that help with element positioning and layout-related is-

sues. These are mainly used by third party UI libraries like script.aculo.us .

absolutize

absolutize(element)

Turns element into an absolutely-positioned element withont changing its position in the page layout.

clone

clone(source, target[, options]) -> [Number, Number]

Clones the position and/or dimensions of source onto target as defined by the optional argument op-
tions.
Note that target will be positioned exactly like source whether or not it is part of the same CSS contain-

ing blockz.

! http://script.aculo.us
z http:/ /www.w3.org/TR/CSS21/visudet.html#containing-block-details

http://script.aculo.us
http://www.w3.org/TR/CSS21/visudet.html#containing-block-details
http://www.w3.org/TR/CSS21/visudet.html#containing-block-details

Options for clone

Name Default Description

setleft true clones source’ left CSS property
onto target.

setTop true clones source’ top CSS property onto
target.

setWidth true clones source’s width onto target.

setHeight true clones source’s width onto target.

offsetLeft 0 Number by which to offset target’s

left CSS property.

offsetTop 0 Number by which to offset target’s
top CSS property.

cumulativeOffset

cumulativeOffset(element) -> [Number, Number]

Returns the offsets of element from the top left corner of the document.
Adds the cumulative offsetlLeft and of fsetTop of an element and all its parents.

Note that all values are returned as nambers only although they are expressed in pixels.

offsetParent

offsetParent(element) -> HTMLElement

Returns element’s closest positioned ancestor. 1f none is found, the body element is returned.

. .. 3
The returned element is element’s CSS containing block ™.

overlap

overlap(mode, element) -> Number

Returns a Number between 0 and 1 corresponding to the proportion to which element overlaps the point
previously defined by Position.within. mode can be set to either vertical or horizontal.

3 http://www.w3.0rg/ TR/CSS21 /visudet.html#containing-block-details

132 | Chapter 17. Position

http://www.w3.org/TR/CSS21/visudet.html#containing-block-details

Imagine a block-level element (i.e., with dimensions) and a point X, y measured in pixels from the top left
corner of the page. Calling Position.within will indicate whether that point is within the area occupied by
element.

Now imagine an element of equal dimensions to element with its top left corner at x, y. Posi-

tion.overlap indicates the amount these two boxes overlap in either the horizontal or vertical direction.

Note that Position.within must be called right before calling this method.

var element = $('some_positioned_element');
Position.cumulativeOffset(element);

// -> [100, 100] (element is 100px from the top and left edges of the page)
element.getDimensions();

// -> { width: 150, height: 150 }

Position.within(element, 175, 145);
// -> true

Position.overlap('horizontal', element);
// -> 0.5 (point is halfway across the element's length)

Position.overlap('vertical', element);
// -> 0.3 (point is 3/10ths of the way across the element's height)

Example 17.1.

page
page(element) -> [Number, Number]

Returns the X/Y coordinates of element relative to the viewport.

Note that all values are returned as numbers only although they are expressed in pixels.

positionedOffset

positionedOffset(element) -> [Number, Number]
Calculates the element’s offset relative to its closest positioned ancestor (i.e., the element that would be re-
turned by Position.offsetParent(element).

Calculates the cumulative offsetLeft and offsetTop of an element and all its parents uu#/ it reaches an
element with a position of static.

Note that all values are returned as numbers only although they are expressed in pixels.

page | 133

prepare
prepare()

Calculates document scroll offsets for use with Position.withinIncludingScrollOffsets.

realOffset

realOffset(element) -> [Number, Number]
Calculates the cumulative scroll offset of an element in nested scrolling containers. Adds the cumulative
scrollLeft and scrollTop of an element and all its parents.

Used for calculating the scroll offset of an element that is in more than one scroll container (e.g, a draggable

in a scrolling container which is itself part of a scrolling document).

Note that all values are returned as nambers only although they are expressed in pixels.

relativize

relativize(element)

Turns element into an relatively-positioned element without changing its position in the page layout.

within
within(element, x, y) -> Boolean

Indicates whether the point x, y (measured from the top-left corner of the document) is within the bound-
aries of element. Must be called immediately before Position.overlap.

This function uses Position.cumulativeOffset to determine element’s offset from the top of the
page, then combines those values with element’s height and width to identify the offsets of all four corners
of the element. It then compares these coordinates to the x and y arguments, returning true if those co-

ordinates fall within the bounding box of element.

var element = $('some_positioned_element');
Position.cumulativeOffset(element); // -> [100, 100]
Element.getDimensions(element) ; // -> { width: 150, height: 150 }

Position.within(element, 200, 200); // -> true
Position.within(element, 260, 260); // -> false

Example 17.2.

134 | Chapter 17. Position

withinIincludingScrolloffsets

withinIncludingScrollOffsets(element, x, y) -> Boolean

Indicates whether the point x, y (measured from the top-left corner of the document) is within the bound-
aries of element. Used instead of Position.within whenever element is a child of a scrolling container.
Must be called immediately before Position.overlap and immediately after Position.prepare.

This method handles an edge case of Position.within: when element is the child of a scrolling contain-
er. (Scriptaculous, for instance, uses it whenever a Draggable’s container is scrollable.) For performance reas-

ons, this method should not be used unless you need this specific edge case.

You must call Position.prepare first, since it calculates offsets that are used by this method.

withinIncludingScrolloffsets | 135

Chapter

18

Prototype

The Prototype namespace provides fundamental information about the Prototype library you’re using, as

well as a central repository for default iterators or functions.

We say “namespace,” because the Prototype object is not intended for instanciation, nor for mixing in
other objects. It’s really just... a namespace.

Your version of Prototype

Your scripts can check against a particular version of Prototype by examining Prototype.Version, which
is a version string (e.g. “1.5.0”). The famous script.aculo.us " library does this at load time to ensure it’s being
used with a reasonably recent version of Prototype, for instance.

Browser features

Prototype also provides a (nascent) repository of browser feature information, which it then uses here and
there in its source code. The idea is, first, to make Prototype’s source code more readable; and second, to
centralize whatever scripting trickery might be necessary to detect the browser feature, in order to ease

maintenance.

. . . 2 .
The only currently available feature detection is browser support for DOM Level 3 XPath™, accessible as a
boolean at Prototype.BrowserFeatures.XPath.

1 .
http://script.aculo.us
z http:/ /www.w3.org/TR/DOM-Level-3-XPath/xpath.html

http://script.aculo.us
http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

Default iterators and functions

Numerous methods in Prototype objects (most notably the Enumerable module) let the user pass in a cus-
tom iterator, but make it optional by defaulting to an “identity function” (an iterator that just returns its ar-

gument, untouched). This is the Prototype . K function, which you’ll see referred to in many places.

Many methods also take it easy by protecting themselves against missing methods here and there, reverting
to empty functions when a supposedly available method is missing. Such a function simply ignores its poten-
tial arguments, and does nothing whatsoever (wich is, oddly enough, blazing fast). The quintessential empty
function sits, unsurprisingly, at Prototype.emptyFunction (note the lowercase first letter).

K(argument) -> argument

. . . .3 .
K is Prototype’s very own identity function’, L.e. it returns its argument untouched.

This is used throughout the framework, most notably in the Enumerable module as a default value for iter-

atofrs.

Prototype.K('hello world!");
// -> 'hello world!'

Prototype.K(1.5);
// -> 1.5

Prototype.K(Prototype.K);
// -> Prototype.K

Excample 18.1.

emptyFunction

emptyFunction([argument...])

The emptyFunction does nothing... and returns nothing!

It is used thoughout the framework to provide a fallback function in order to cut down on conditionals.

Typically you'll find it as a default value for optional callback functions.

’ http://en.wikipedia.org/wiki/Identity_function

138 | Chapter 18. Prototype

http://en.wikipedia.org/wiki/Identity_function

Chapter

19

String

Prototype enhances the String object with a series of useful methods for String.prototype ranging
from the trivial to the complex. Tired of stripping trailing whitespaces, try our String.strip method.
Want to replace replace ? Have a look at String.sub and String.gsub. Need to parse a query string ? We

have just what you need.

camelize

camelize() -> string

Converts a string separated by dashes into a camelCase equivalent. For instance, ' foo-bar' would be con-

verted to ' fooBar'.

Prototype uses this internally for translating CSS properties into their DOM sty le property equivalents.

'background-color'.camelize(); // -> 'backgroundColor'
'-moz-binding'.camelize(); // -> 'MozBinding'

Example 19.1.

capitalize
capitalize() -> string

Capitalizes the first letter of a string and downcases all the others.

'hello'.capitalize(); // -> 'Hello'
"HELLO WORLD!'.capitalize(); // -> 'Hello world!'’

Example 19.2.

dasherize

dasherize() -> string

Replaces every instance of the underscore character ("_") by a dash ("-").

'border_bottom_width'.dasherize(); // -> 'border-bottom-width'

Excample 19.3.

m Note

Used in conjunction with underscore (), dasherize() converts a DOM style into its CSS

equivalent.

'borderBottomWidth'.underscore().dasherize(); // -> 'border-bottom-width'

Excample 19.4.

escapeHTML

escapeHTML() -> string

Converts HTML special characters to their entity equivalents.

'<div class="article">This is an article</div>'.escapeHTML();
// -> "<div class="article">This is an article</div>"

Excample 19.5.

140 | Chapter 19. String

evalScripts

evalScripts() -> [returnedValue...]

Evaluates the content of any script block present in the string, Returns an array containing the value re-
turned by each script.

'"lorem... <script>2 + 2</script>'.evalScripts();
// -> [4]

'<script>2 + 2</script><script>alert("hello world!")</script>"'.evalScripts();
// -> [4, undefined] (and displays 'hello world!' in the alert dialog)

Example 19.6.

extractScripts

extractScripts() -> [script...]

Exctracts the content of any script block present in the string and returns them as an array of strings.

This method is used internally by evalScripts (). It does #oz evaluate the scripts (use evalScripts() to
do that), but can be usefull if you need to evaluate the scripts at a later date.

'lorem... <script>2 + 2</script>'.extractScripts();
/] -> ['2 + 2']

'<script>2 + 2</script><script>alert("hello world!")</script>'.extractScripts();
// -> ['2 + 2', 'alert("hello world!")']

Excample 19.7.

To evaluate the scripts later on, you can use the following:

var myScripts = '<script>2 + 2</script><script>alert("hello world!")</script>'.extractScripts();
// -> ['2 + 2", '"alert("hello world!")"']

var myReturnedValues = myScripts.map(function(script) {
return eval(script);
5)5
// -> [4, undefined] (and displays 'hello world!' in the alert dialog)

Example 19.8.

extractScripts | 141

gsub

gsub(pattern, replacement) -> string

Returns the string with ezery occurence of a given pattern replaced by either a regular string, the returned

value of a function or a Template string. The pattern can be a string or a regular expression.

If its second argument is a string gsub () works just like the native JavaScript method replace () set to

global match.
var mouseEvents = 'click dblclick mousedown mouseup mouseover mousemove mouseout';
mouseEvents.gsub(' ', ', ');

// -> 'click, dblclick, mousedown, mouseup, mouseover, mousemove, mouseout'

mouseEvents.gsub(/\s+/, ', ');
// -> 'click, dblclick, mousedown, mouseup, mouseover, mousemove, mouseout'

Excample 19.9.

If you pass it a function, it will be invoked for every occurrence of the pattern with the match of the current
pattern as its unique argument. Note that this argument is the returned value of the match () method called
on the current pattern. It is in the form of an array where the first element is the entire match and every sub-

sequent one corresponds to a parenthesis group in the regex.

mouseEvents.gsub(/\w+/, function(match){return 'on' + match[0].capitalize()});
// -> 'onClick onDblclick onMousedown onMouseup onMouseover onMousemove onMouseout'

var markdown = '![a pear](/img/pear.jpg) ![an orange] (/img/orange.jpg)"';
markdown.gsub (/!\[(.*?)\I\((.*?)\)/, function(match){
return '';

3

// -> ' '

Excample 19.10.

Lastly, you can pass gsub () a Template string in which you can also access the returned value of the
match () method using the ruby inspired notation: #{0} for the first element of the array, #{1} for the

second one, and so on. So our last example could be easily re-written as:

markdown.gsub (/!\[C.*2)\IN(C(C.*?)\)/, '");
// -> ' '

Excample 19.11.

142 | Chapter 19. String

If you need an equivalent to gsub () but without global match set on, try sub ().

m Note

Do not use the "g" flag on the regex as this will create an infinite loop.

Inspect
inspect([useDoubleQuotes = false]) -> String

Returns a debug-oriented version of the string (i.e. wrapped in single or double quotes, with backslashes and

quotes escaped).

For more information on inspect methods, see Object.inspect.

'"IN'm so happy.'.inspect();
// -> "\"IN\\\'m so happy.\'' (displayed as 'I\'m so happy.' in an alert dialog or the console)

"I\'m so happy.'.inspect(true);
// -> '""I'm so happy."' (displayed as "I'm so happy." in an alert dialog or the console)

Example 19.12.

parseQuery

Alias of toQueryParams.

scan

scan(pattern, iterator) -> string

Allows iterating over every occurrence of the given pattern (which can be a string or a regular expression).

Returns the original string.

Internally just calls gsub () passing it pattern and iterator as arguments.

'apple, pear & orange'.scan(/\w+/, alert);

Example 19.13.

// -> 'apple pear orange' (and displays 'apple', 'pear' and 'orange' in three successive alert dialogg

inspect | 143

~

Can be used to populate an array:

var fruits = [1;

'apple, pear & orange'.scan(/\w+/, function(match){ fruits.push(match[0])});
fruits.inspect()

// -> ['apple', 'pear', 'orange']

Excample 19.14.

or even to work on the DOM:

'failure-message, success-message & spinner'.scan(/(\w|-)+/, Element.toggle)
// -> 'failure-message, success-message & spinner' (and toggles the visibility of each DOM element)

Excample 19.15.

Note

Do not use the "g" flag on the regex as this will create an infinite loop.

strip

strip() -> string

Strips all leading and trailing whitespace from a string,

' hello world! ".strip();
// -> 'hello world!'

Example 19.76.

stripScripts

stripScripts() -> string

Strips a string of anything that looks like an HTML script block.

144 | Chapter 19. String

'a link<script>alert("hello world!")</script>'.stripScripts();
// -> "a link'

Example 19.17.

stripTags
stripTags() -> string

Strips a string of any HTML tag.

Watch out for <script> tags in your string, as stripTags () will #zof remove their content. Use
stripScripts() to do so.

'a link'.stripTags();
// -> 'a link'

'a 1link<script>alert("hello world!")</script>'.stripTags();
// -> 'a linkalert("hello world!")'

a link<script>alert("hello world!")</script>'.stripScripts().stripTags();
// -> "a link'

Excample 19.18.

sub

sub(pattern, replacement[, count = 1]) -> string
Returns a string with the firs# count occurrences of pattern replaced by either a regular string, the returned
value of a function or a Template string. pattern can be a string or a regular expression.

Unlike gsub (), sub () takes a third optional parameter which specifies the number of occurrences of the
pattern which will be replaced. If not specified, it will default to 1.

Apart from that, sub () works just like gsub (). Please refer to it for a complete explanation.

var fruits = 'apple pear orange';

fruits.sub(' ', ', ');
// -> 'apple, pear orange'

fruits.sub(' ', ', ', 1);
// -> 'apple, pear orange'

stripTags | 145

fruits.sub(' ', ', ', 2);
// -> 'apple, pear, orange'

fruits.sub(/\w+/, function(match){return match[@].capitalize() + ','}, 2);
// -> 'Apple, Pear, orange'

var markdown = '![a pear](/img/pear.jpg) ![an orange] (/img/orange.jpg)"';
markdown.sub(/!\[(.*?)\I\N((.*?)\)/, function(match){

return ''
B)s

// -> ' ![an orange] (/img/orange.jpg)"

markdown.sub (/!\[C.*?)\NIN(C(C.*?)\)/, '");
// -> ' ![an orange] (/img/orange.jpg)"

Excample 19.19.

Note

Do not use the "g" flag on the regex as this will create an infinite loop.

succ

succ() -> string

Used internally by ObjectRange. Converts the last character of the string to the following character in the
Unicode alphabet.

'a'.succ();

// ->'b'
'aaaa'.succ();
// -> 'aaab'

Example 19.20.

toArray

toArray() -> [character...]

Splits the string character-by-character and returns an array with the result.

146 | Chapter 19. String

'a'.toArray();
// -> ['a']

'hello world!'.toArray();
/7 <> ['h', 'e'. '1'. '1', 'o', ' ', 'w', ‘o', 'r', 'l', 'd', 'I']

Example 19.21.

toQueryParams

toQueryParams([separator = '&']) -> Object

Parses a URI-like query string and returns an object composed of parameter/value pairs.

This method is realy targeted at parsing query strings (hence the default value of "&" for the separator ar-

gument).

For this reason, it does nof consider anything that is either before a question mark (which signals the begin-
ning of a query string) or beyond the hash symbol ("#"), and runs decodeURIComponent () on each para-

metet/value pair.
toQueryParams () also aggregates the values of identical keys into an array of values.

Note that parameters which do not have a specified value will be set to undefined.

'section=blog&id=45".toQueryParams();
// -> {section: 'blog', id: '45"}

'section=blog;id=45".toQueryParams();
// -> {section: 'blog', id: '45'}

'http://www.example.com?section=blog&id=45#comments'.toQueryParams();
// -> {section: 'blog', id: '45'}

'section=blog&tag=javascript&tag=prototype&tag=doc'.toQueryParams();
// -> {section: 'blog', tag: ['javascript', 'prototype', 'doc']}

"tag=ruby on rails'.toQueryParams();
// -> {tag: 'ruby%20on%20rails'}

'id=45&raw'.toQueryParams();
// -> {id: '45', raw: undefined}

Example 19.22.

toQueryParams | 147

truncate

truncate([length = 30[, suffix = '...']1]) -> string

Truncates a string to the given length and appends a suffix to it (indicating that it is only an excerpt).
Of course, truncate ()does not modify strings which are shorter than the specified length.

If unspecified, the length parameter defaults to 30 and the suffix to

Note that truncate () takes into consideration the length of the appended suffix so as to make the re-
turned string of exactly the specified length.

'A random sentence whose length exceeds 30 characters.'.truncate();
// -> 'A random sentence whose len...'

'Some random text'.truncate();
// -> 'Some random text.'

'Some random text'.truncate(10);
// -> 'Some ra...'

'Some random text'.truncate(1O, ' [...]');
// -> 'Some [...]'

Example 19.23.

underscore

underscore() -> string

Converts a camelized string into a series of words separated by an underscore ("_").

'borderBottomWidth'.underscore(); // -> 'border_bottom_width'

Example 19.24.

Used in conjunction with dasherize (), underscore () converts a DOM style into its CSS equivalent.

'borderBottomWidth'.underscore().dasherize(); // -> 'border-bottom-width'

Excample 19.25.

148 | Chapter 19. String

unescapeHTML

unescapeHTML() -> string

Strips tags and converts the entity forms of special HTML characters to their normal form.

'x > 10'.unescapeHTML ()
// -> "x > 10"

'<h1>Pride & Prejudice</hl1>'.unescapeHTML()
// -> 'Pride & Prejudice'

Example 19.26.

unescapeHTML | 149

Chapter

20

Template

Any time you have a group of similar objects and you need to produce formatted output for these objects,
maybe inside a loop, you typically resort to concatenating string literals with the object's fields. There's noth-
ing wrong with the above approach, except that it is hard to visualize the output immediately just by glan-
cing at the concatenation expression. The Template class provides a much nicer and clearer way of achieving
this formatting,

Straight forward templates

The Template class users a basic formatting syntax, similar to what is used in Ruby. The templates are cre-
ated from strings that have embedded symbols in the form #{fieldName} that will be replaced by actual
values when the template is applied (evaluated) to an object. A simple example follows.

// the template (our formatting expression)
var myTemplate = new Template('The TV show #{title} was created by #{author}.');

// our data to be formatted by the template
var show = {title: 'The Simpsons', author: 'Matt Groening', network: 'FOX' };

// let's format our data

myTemplate.evaluate(show) ;
// -> The TV show The Simpsons was created by Matt Groening.

Example 20.1.

Templates are meant to be reused

As the previous example illustrated, the Template objects are not statically tied to the data. The data is
bound to the template only during the evaluation of the template, without affecting the template itself. The

next example shows the same template being used with a handful of distinct objects.

//creating a few similar objects

var conversionl = {from: 'meters', to: 'feet', factor: 3.28};

var conversion2 = {from: 'kilojoules', to: 'BTUs', factor: 0.9478};
var conversion3 = {from: 'megabytes', to: 'gigabytes', factor: 1024};

//the template
var templ = new Template('Multiply by #{factor} to convert from #{from} to #{to}.');

//1let's format each object

[conversionl, conversion2, conversion3].each(function(conv){
templ.evaluate(conv);

s

// -> Multiply by 3.28 to convert from meters to feet.

// -> Multiply by 0.9478 to convert from kilojoules to BTUs.

// -> Multiply by 1024 to convert from megabytes to gigabytes.

Excample 20.2.

Escape sequence

There's always the chance that one day you'll need to have a literal in your template that looks like a symbol,

but is not supposed to be replaced. For these situations thete's an escape sequence - the backslash character

(\)

// note: you're seeing two backslashes here because the backslash is also a

// escaping character in JavaScript strings

var t = new Template('in #{lang} we also use the \#{variable} syntax for templates.');
var data = {lang:'Ruby', variable: '(not used)'};

t.evaluate(data) ;

// -> in Ruby we also use the #{variable} syntax for templates.

Example 20.3.

Custom syntaxes

The default syntax of the template strings will probably be enough for most scenarios. In the rare occasion
where the default Ruby-like syntax is inadequate there's provision for customization. The Template's con-

structor accepts an optional second argument that is a regular expression object to match the replaceable

152 | Chapter 20. Template

symbols in the template string. Let's put together a template that uses a syntax similar to the ubiquitous
<%= %> constructs.

var syntax = /(™| .|\r]\n) (\<%=\s*(\w+)\s*%\>)/; //matches symbols like '<%= field %>'
var t = new Template('<div>Name: <%= name %>, Age: <%=age%></div>', syntax);
t.evaluate({name: 'John Smith', age: 26}); // -> <div>Name: John Smith, Age: 26</div>

Example 20.4.

There ate important constraints to any custom syntax. Any syntax must provide at least three groupings in
the regular expression. The first grouping is to capture what comes before the symbol, to detect the back-
slash escape character (no, you cannot use a different character.) The second grouping captures the entire
symbol and will be completely replaced upon evaluation. Lastly, the third required grouping captures the
name of the field inside the symbol.

evaluate

evaluate(object) -> String

Applies the template to the given object’s data, producing a formatted string with symbols replaced by cot-
responding object’s properties.

var hrefTemplate = new Template('/dir/showAll?lang=#{language}&categ=#{category}&lv=#{levels}');
var selection = {category: 'books' , language: 'en-US'};

hrefTemplate.evaluate(selection);
// -> '/dir/showAll?lang=en-US&categ=books&lv="

hrefTemplate.evaluate({language: 'jp', levels: 3, created: '10/12/2005'});
// -> "/dir/showAll?lang=jp&categ=&lv=3"

hrefTemplate.evaluate({});
// -> '"/dir/showAll?lang=&categ=&lv="

hrefTemplate.evaluate(null);
// -> error

Example 20.5.

evaluate | 153

Chapter

21

TimedObserver

An abstract observer class which instances can be used to periodically check some value and trigger a call-
back when the value has changed. The frequency is in seconds.

A TimedObserver object will try to check some value using the getValue () instance method which isn't
defined in this class. You must use the concrete implementations of TimedObserver like Form.Observer
or Form.Element.Observer. The former serializes a form and triggers when the result has changed, while
the latter simply triggers when the value of a certain form control changes.

Using TimedObserver implementations is straightforward; simply instantiate them with appropriate argu-

ments. For example:

new Form.Element.Observer(
'myelement’,
0.2, // 200 milliseconds
function(el, value){
alert('The form control has changed value to: ' + value)
}
)

Example 21.1.

Now that we have instantiated an object, it will check the value of the form control every 0.2 seconds and
alert us of any change. While it is useless to alert the user of his own input (like in the example), we could be
doing something useful like updating a certain part of the Ul or informing the application on server of stuff

happening (over Ajax).

The callback function is always called with 2 arguments: the element given when the observer instance was
made and the actual value that has changed and caused the callback to be triggered in the first place.

Form.Element.Observer

new Form.Element.Observer(element, frequency, callback)

A timed observer for a specific form control.

Form.Element observer implements the getValue () method using Form.Element.getValue() on the

given element. See Abstract.TimedObserver for general documentation on timed observers.

Form.Observer

new Form.Observer(element, frequency, callback)

A timed observer that triggers when any value changes within the form.

Form observer implements the getValue () method using Form.serialize() on the element from the
first argument. See Abstract.TimedObserver for general documentation on timed observers.

new Form.Observer('example', 0.3, function(form, value){
$('msg').update('Your preferences have changed. Resubmit to save').style.color = 'red'
form.down() .setStyle({ background: 'lemonchiffon', borderColor:'red' })

)

$('example').onsubmit = function() {
$('msg').update('Preferences saved!').style.color = 'green'
this.down().setStyle({ background:null, borderColor:null })
return false

Example 21.2.

156 | Chapter 21. TimedObserver

	Prototype 1.5
	Table of Contents
	Chapter 1. Utility Methods
	$
	$$
	Performance: when better alternatives should be used instead of $$
	Supported CSS syntax

	$A
	$F
	$H
	$R
	$w
	Try.these
	document.getElementsByClassName

	Chapter 2. Ajax
	Ajax Options
	Common options
	Common callbacks
	Responder callbacks

	Ajax.PeriodicalUpdater
	Additional options
	Disabling and re-enabling a PeriodicalUpdater

	Ajax.Request
	A basic example
	Request life-cycle
	onSuccess and onFailure, the under-used callbacks
	Automatic JavaScript response evaluation
	Methods you may find useful
	Is the response a successful one?
	Getting HTTP response headers
	Evaluating JSON headers

	Ajax.Responders
	Ajax.Updater
	A simple example
	Additional options
	Single container, or success/failure alternative?

	Chapter 3. Array
	Why you should stop using for…in to iterate (or never take it up)
	What is a developer to do?
	clear
	clone
	compact
	each
	first
	flatten
	from
	indexOf
	inspect
	last
	reduce
	reverse
	size
	toArray
	uniq
	Performance considerations

	without

	Chapter 4. Class
	create
	Example:

	Chapter 5. Element
	addClassName
	addMethods
	Using Element.addMethods with no argument

	ancestors
	classNames
	cleanWhitespace
	descendantOf
	descendants
	down
	Arguments

	empty
	extend
	getDimensions
	getElementsByClassName
	getElementsBySelector
	getHeight
	getStyle
	getWidth
	hasClassName
	hide
	Backwards compatibility change

	immediateDescendants
	inspect
	makeClipping
	makePositioned
	match
	next
	Arguments

	nextSiblings
	observe
	previous
	Arguments

	previousSiblings
	readAttribute
	recursivelyCollect
	remove
	removeClassName
	replace
	scrollTo
	setStyle
	show
	Backwards compatibility change

	siblings
	stopObserving
	toggle
	Backwards compatibility change

	toggleClassName
	undoClipping
	undoPositioned
	up
	Arguments

	update
	visible

	Chapter 6. Enumerable
	Aliases: it’s all about having it your way
	Using it efficiently
	collect, invoke, pluck and each: thinking about the use case
	reject and findAll vs. partition
	Mixing Enumerable in your own objects
	all
	any
	collect
	Optimized versions

	detect
	each
	$break and $continue
	each vs. _each
	Optimized version

	entries
	find
	findAll
	grep
	include
	inject
	Performance considerations

	invoke
	map
	max
	member
	min
	partition
	pluck
	reject
	select
	size
	Performance considerations

	sortBy
	toArray
	Performance considerations

	zip

	Chapter 7. Event
	♪ What a wonderful mess (it would be) ♫
	Prototype to the rescue!
	element
	findElement
	isLeftClick
	observe
	What are those arguments about?
	A simple example
	The tricky case of methods that need this

	pointerX
	pointerY
	stop
	stopObserving
	Why won't it stop observing!?

	unloadCache
	The sad tale of MSIE, event handlers and memory leaks
	You don’t even need to know this

	Chapter 8. Form
	disable
	enable
	findFirstElement
	focusFirstElement
	getElements
	getInputs
	reset
	serialize
	serializeElements

	Chapter 9. Form.Element
	activate
	clear
	disable
	enable
	focus
	getValue
	present
	select
	serialize

	Chapter 10. Function
	What is binding?
	Prototype to the rescue!
	bind
	bindAsEventListener

	Chapter 11. Hash
	Creating a hash
	each
	inspect
	keys
	merge
	remove
	toQueryString
	values

	Chapter 12. Insertion
	After
	Original HTML
	Resulting HTML

	Before
	Original HTML
	Resulting HTML

	Bottom
	Original HTML
	Resulting HTML

	Top
	Original HTML
	Resulting HTML

	Chapter 13. Number
	What becomes possible
	succ
	times
	toColorPart

	Chapter 14. Object
	clone
	extend
	inspect
	keys
	values

	Chapter 15. ObjectRange
	include

	Chapter 16. PeriodicalExecuter
	Creating a PeriodicalExecuter
	stop

	Chapter 17. Position
	absolutize
	clone
	Options for clone

	cumulativeOffset
	offsetParent
	overlap
	page
	positionedOffset
	prepare
	realOffset
	relativize
	within
	withinIncludingScrolloffsets

	Chapter 18. Prototype
	Your version of Prototype
	Browser features
	Default iterators and functions
	K
	emptyFunction

	Chapter 19. String
	camelize
	capitalize
	dasherize
	escapeHTML
	evalScripts
	extractScripts
	gsub
	inspect
	parseQuery
	scan
	strip
	stripScripts
	stripTags
	sub
	succ
	toArray
	toQueryParams
	truncate
	underscore
	unescapeHTML

	Chapter 20. Template
	Straight forward templates
	Templates are meant to be reused
	Escape sequence
	Custom syntaxes
	evaluate

	Chapter 21. TimedObserver
	Form.Element.Observer
	Form.Observer

